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Overview

History

The General Circle Method Procedure

What Can You do With This?



Beginnings: The Partition Function

Let P(n) denote the number of ways of expressing n as a sum of
natural numbers.

Question

Does there exist a closed form expression for P(n)?

What We Know

As of 2023, there is no known closed form expression for P(n).

Next Question

What about an asymptotic formula?
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Beginnings: The Partition Function

Theorem (Hardy, Ramanujan, Asymptotic formulae in
combinatory analysis, 1918)

P(n) ∼ 1

4n
√
3
eπ
√

2n/3.

Here we say that f (n) ∼ g(n) if limn→∞
f (n)
g(n) = 1.

Their proof was based on the observation that one the following
expression for the generating function

f (z) =
∞∑
n=0

P(n)zn =
∞∏
k=1

(
1

1− zk

)
,

thus one may apply Cauchy’s integral formula to obtain

P(n) =
1

2πi

∮
f (z)

zn+1
dz .
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Beginnings: Waring’s Problem

Definition

Given k ∈ N, we define g(k) to be the smallest integer s having
the property that all natural numbers are the sum of at most s
positive integral k-th powers.

Conjecture (Waring, 1770)

One has g(2) = 4, g(3) = 9, g(4) = 19, . . ., and for each k ∈ N
one has g(k) < ∞.

Theorem (Hilbert, 1909)

For each k ∈ N one has g(k) < ∞.
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Beginnings: Waring’s Problem

The exact formula for g(k) is known to be

2k +
⌊
(3/2)k

⌋
− 2

for all but a finite (possibly empty) set of k . The reason for this is
because the representation of small n as a sum of k-th powers
requires an abnormally large number of variables.

Alternate Definition

Given k ∈ N, we define G (k) to be the smallest integer s having
the property that all sufficiently large enough natural numbers are
the sum of at most s positive integral k-th powers.
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Beginnings: Waring’s Problem

Hardy and Littlewood investigated the problem of determining
G (k) in 1920 and in the process formulated the circle method.

World Record Results!

G (2) = 4 Lagrange (1770)
G (3) ⩽ 7 Linnik (1942)
G (4) = 16 Davenport (1939)
G (5) ⩽ 17 Vaughan, Wooley (1995)
G (6) ⩽ 24 Vaughan, Wooley (1994)
G (7) ⩽ 31 Wooley (2016)
G (8) ⩽ 39 Wooley (2016)
G (9) ⩽ 47 Wooley (2016)
G (k) ⩽ ⌈k(log k + 4.20032)⌉ Brüdern, Wooley (2023)
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Overview of the Circle Method

Generally, the circle method begins with a generating function

S(α) =
∑
n∈Z

r(n)e(αn),

where e(θ) = e2πiθ and r(n) is some function we are interested in.
Then we may pick any term out via the integral

r(n) =

∫ 1

0
S(α)e(−αn)dα.

Typically r(n) = 0 for all n greater than some parameter X , or
r(n) rapidly decays to 0 for n > X .
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Overview of the Circle Method

For example if we define

S(α) =

 ∑
1⩽x⩽X

e(αxk)

s

,

then then one can easily show that

r(n) = r(n; s, k ,X ) = #{x1, . . . , xs ∈ [1,X ]∩N : xk1 +· · ·+xks = n}.

If one can show r(n; s0, k0, ⌊n1/k⌋) ⩾ 1 for a fixed pair of (s0, k0)
and all sufficiently large n then we may conclude that G (k0) ⩽ s0.



Overview of the Circle Method

So far we have done nothing! How do we go about analyzing the
integral ∫ 1

0
S(α)e(−αn)dα?

Important Insight of Hardy-Littlewood

They noticed that the modulus of the generating function S(α)
was quite large when α = a/q and q = o(X ). In the opposite
direction, whenever α was not well approximable by rationals of
low denominator then the modulus of the generating function S(α)
should exhibit some cancellation and be small.
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Major and Minor arc dissections

Thus were born the major arcs, which in the classical Waring’s
problem are taken to be the following.

Major Arcs

Mδ =
⋃

0⩽a⩽q⩽X δ

(a,q)=1

{α ∈ [0, 1) : |α− a/q| ⩽ X δ−k}

Minor Arcs

mδ = [0, 1)\Mδ

Note: From now on we will be taking X = ⌈n1/k⌉.
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Major and Minor arc dissections

With these definitions in hand one now expects that the integral
over the major arcs

I1 :=

∫
Mδ

S(α)e(−αn)dα,

should be the main term and the integral over the minor arcs

I2 :=

∫
mδ

S(α)e(−αn)dα,

should exhibit some cancellation and therefore have smaller rate of
growth than the main term.
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Dealing with the Minor arcs

Define fk(α) =
∑

1⩽x⩽X e(αxk). Now we cite some important
results in the field of exponential sums.

By Weyl’s Inequality

sup
α∈mδ

|fk(α)| ≪ X 1−δ21−k+ϵ

By Hua’s Lemma

∫ 1

0
|fk(α)|2

k
dα ≪ X 2k−k+ϵ
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Dealing with the Minor arcs

Returning to our definition of I2 and citing the previous results,
one has by Hölder’s inequality that whenever s ⩾ 2k + 1 we obtain

I2 ⩽ sup
α∈mδ

|f (α)|s−2k
∫ 1

0
|fk(α)|2

k
dα

≪ X (s−2k )(1−δ21−k+ϵ)+2k−k+ϵ

= o(ns/k−1)

Which is good enough, because (spoiler) the major arc
contribution grows like a positive multiple of ns/k−1.
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Dealing with the Major arcs

When α is well approximated by the rational number a/q we
expect that

fk(α) ∼ q−1

 ∑
1⩽r⩽q

e(ark/q)

(∫ X

0
e(βγk)dγ

)
.

Thus after some work one may arrive at the conclusion

I1 ∼ σ∞

 ∏
p prime

σ(p)

 ns/k−1.
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Dealing with the Major arcs

But what are these quantities σ∞ and σ(p)? You may actually
consider them as “densities” of local solutions.

To be more specific
one can show that

σ∞ = lim
η→0+

η−1mes
{
x ∈ [0, 1]s : |xk1 + · · ·+ xks − n/X k | < η

}
,

and hence may be regarded as a “real” density of solutions.
Similarly, in a p-adic sense, one may show that

σ(p) = lim
h→∞

ph(1−s)#{x ∈ (Z/phZ)s : xk1 + · · ·+ xks ≡ n mod ph},

is a p-adic density of solutions. Some minor problems are left to be
dealt with but this overview will suffice for now.
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What has been done with the Circle Method?

Here are some number theoretical results which have been
established via the circle method.

Theorem (Estermann, 1938)

Almost all positive even numbers are the sum of at most two
primes.

Theorem (Helfgott, 2013 pending publication as of 2023)

All odd numbers greater than 5 are the sum at most three primes.

Theorem (Magyar, Stein, Wainger, 2002)

The discrete maximal spherical operator A∗ is bounded in ℓp(Zd)
to itself when p > d

d−2 and d ⩾ 5.
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What could you do with the Circle Method?

Unresolved problems!

Twin Prime Conjecture

It is possible to prove the twin prime conjecture if one were to
obtain improved bounds over the minor arcs. (In fact something
stronger would be shown).

Goldbach Conjecture

If we could improve our understanding of the minor arcs this could
be proven, as the main term seems to stem from the minor arcs!
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Thank you for listening!
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