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What is a K -multimagic square

Definition

Given K ⩾ 2 we say a matrix Z ∈ ZN×N is a K -multimagic square
of order N or MMS(K ,N) for short if the matrices

Z◦k := (zki ,j)1⩽i ,j⩽N ,

remain magic squares for 1 ⩽ k ⩽ K .

Note: Here we do not require the elements to be distinct.

Definition

If a MMS(K ,N) contains every integer from 1 to N2 then it is
called a normal MMS(K ,N).
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Trivial Examples of MMS(K ,N)

1 1 1

1 1 1

1 1 1

This is a MMS(K , 3) for all
K ⩾ 2.

a b c d

d c b a

b a d c

c d a b

For any a, b, c , d ∈ Z this is a
MMS(K , 4) for all K ⩾ 2.
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Definition of trivial MMS(K ,N)

Consideration of these “trivial” MMS(K ,N) motivates the
following definition.

Definition

For K ⩾ 2 and N ∈ N a MMS(K ,N) is called trivial if it utilizes N
or less distinct integers.

Question: Given K ⩾ 2 and N ⩾ 4 does there exists nontrivial
MMS(K ,N)?
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Examples of nontrivial MMS(K ,N)

In 2006, Jaroslaw Wroblewski found the first nontrivial MMS(2, 6).

17 36 55 124 62 114

58 40 129 50 111 20

108 135 34 44 38 49

87 98 92 102 1 28

116 25 86 7 96 78

22 74 12 81 100 119

Open Problem

Does there exist a nontrivial MMS(2, 5)?
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Examples of nontrivial MMS(K ,N)

In 2002, Walter Trump found the first nontrivial MMS(3, 12).

1 22 33 41 62 66 79 83 104 112 123 144
9 119 45 115 107 93 52 38 30 100 26 136
75 141 35 48 57 14 131 88 97 110 4 70
74 8 106 49 12 43 102 133 96 39 137 71
140 101 124 42 60 37 108 85 103 21 44 5
122 76 142 86 67 126 19 78 59 3 69 23
55 27 95 135 130 89 56 15 10 50 118 90
132 117 68 91 11 99 46 134 54 77 28 13
73 64 2 121 109 32 113 36 24 143 81 72
58 98 84 116 138 16 129 7 29 61 47 87
80 34 105 6 92 127 18 53 139 40 111 65
51 63 31 20 25 128 17 120 125 114 82 94

Not only is this MMS(3, 12) nontrivial, it is normal!

Open Problem

Does there exist a nontrivial MMS(3, 11)?
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Formulating our problem

Given K ⩾ 2 let N(K ) denote the smallest natural number for
which there exists non-trivial MMS(K ,N(K )).

K Upper bound on N(K ) Attributed to

2 6 J. Wroblewski
3 12 W. Trump
4 243 P. Fengchu
5 729 L. Wen
6 4096 P. Fengchu

K ⩾ 2 (4K − 2)K Zhang, Chen, and Lei
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Our results

Via the Hardy-Littlewood circle method we establish

Theorem (F. 2024+)

N(K ) ⩽ 2K (K + 1) + 1 for K ⩾ 2.

▶ This beats previously known results as soon as K ⩾ 4 and
shows that N(K ) grows at most quadratically in K rather
than potentially exponential in K .
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Our results

▶ One may prove an analogous statement for prime valued
MMS(K ,N) by reapplying the entirety of the circle method
where we detect prime solutions instead of integer solutions.

▶ This, however, is not necessary as via an argument due to
Granville in his expository article Prime Number Patterns one
may apply the Green-Tao theorem and deduce the following.

Corollary (F. 2024+)

Given K ⩾ 2 there exists infinitely many nontrivial prime valued
MMS(K ,N) for every N > 2K (K + 1).
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Brief overview of our methods

Let C = (ci ,j)1⩽i⩽r
1⩽j⩽s

∈ Zr×s be given, and consider the diagonal

system ∑
1⩽j⩽s

ci ,jx
k
j = 0 (1 ⩽ i ⩽ r , 1 ⩽ k ⩽ K ). (1.1)

We define RK (P;C ) to be the number of solutions x ∈ Zs to (1.1)
where maxj |xj | ⩽ P.

There exists of a matrix Cmagic
N ∈ {−1, 0, 1}2N×N2

for which

RK (P;C
magic
N ) counts the number of MMS(K ,N) with entries

satisfying
max

1⩽i ,j⩽N
|zi ,j | ⩽ P.
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Brief overview of our methods

The number of trivial MMS(K ,N) counted by RK (P;C
magic
N ) is at

most O(PN), thus if one wishes to establish the existence of
non-trivial MMS(K ,N) it is enough to show that

RK (P;C
magic
N )

PN
→ ∞ as N → ∞. (1.2)

Theorem (F. 2024+)

For K ⩾ 2 and N > 2K (K + 1) there exists a constant c > 0 for
which one has the asymptotic formula

RK (P;C
magic
N ) ∼ cPN(N−K(K+1)).
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Brief overview of our methods

Given C estimating RK (P;C ) via the circle method has been done
in various general cases by several other mathematicians such as
Brandes, Parsell, and Wooley.

However, in their application of the circle method they require the
r × s matrix of coefficients C to be highly non-singular, i.e., for all
J ⊂ {1, . . . , s} with |J| = r one should have

det (ci ,j)1⩽i⩽r
j∈J

̸= 0.

Our matrix of interest Cmagic
N does not satisfy this property. Thus

we developed a version of the circle method for this problem that
works if C satisfies some weaker property.
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Brief overview of our methods

For a given r × s matrix C = [c1, . . . , cs ] and any set
J ⊂ {1, . . . , s}, we denote by CJ the submatrix of C consisting of
the columns cj where j ∈ J.

For any a ∈ Z and b ∈ N we denote by rem(a, b) the remainder of
a modulo b considered as an integer between 0 and b − 1.

Definition

We say that a matrix C dominates a function f : N → R+

whenever the inequality

rank(CJ) ⩾ min {f (|J|), r} ,

holds for all J ⊂ {1, . . . , s}.
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Brief overview of our methods

Quantitative Hasse Principle (F. 2024+)

Let K ⩾ 2 and suppose that C ∈ Zr×s satisfies s > rK (K + 1).
Then, if C dominates the function

F (x) = max

{
x − rem(s, r)⌊

s
r

⌋ ,
x − rem(s − 1, r)⌊

s−1
r

⌋ }
,

one has that

RK (P;C ) = Ps− rK(K+1)
2 (σK (C ) + o(1)) ,

where σK (C ) ⩾ 0 is a real number depending only on K and C .
Additionally σK (C ) > 0 if there exists non-singular real and p-adic
solutions to the system (1.1).
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Brief overview of our methods

Thus there are two things left to establish.

▶ The matrix Cmagic
N dominates the the function F (x) defined

previously.

▶ This is done via a combinatorial argument and understanding
the underlying linear system associated to the matrix Cmagic

N .

▶ Establish the existence of nonsingular real and p-adic
MMS(K ,N).

▶ This is done by looking at a particular integer valued
MMS(K ,N) and showing that the Jacobian of the associated
linear system at that that point is full rank.
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Breaking news!

What would our methods say if applied to this single degree case?
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Single degree case

Sugar

1992 paper of Brüdern and Cook, On simultaneous diagonal
equations and inequalities.

Spice

Modern smooth exponential sum bounds.

Everything not nice

Our result on Cmagic
N dominating the the function F (x)

Confident can show

For d ⩾ 3 there exists a nontrivial N × N square of dth powers for
all N ⩾ d(log(d) + 4.20032) + 1.
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Thank you for listening!
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