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We begin with some notational conventions.

Whenever € appears in a statement, either implicitly or

explicitly, we assert that the statement holds for every ¢ > 0.
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Notation

We begin with some notational conventions.

Whenever € appears in a statement, either implicitly or
explicitly, we assert that the statement holds for every € > 0

Implicit constants in Vinogradov's notation < and > may
depend on ¢ or the coefficients of fixed polynomials.
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Notation

We begin with some notational conventions.
Whenever € appears in a statement, either implicitly or
explicitly, we assert that the statement holds for every € > 0

Implicit constants in Vinogradov's notation < and > may
depend on ¢ or the coefficients of fixed polynomials.

Whenever the notation |x| is used for a vector we mean the
maximum absolute value the elements of x.
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Notation

We begin with some notational conventions.
Whenever € appears in a statement, either implicitly or
explicitly, we assert that the statement holds for every ¢ > 0.

Implicit constants in Vinogradov's notation < and > may
depend on ¢ or the coefficients of fixed polynomials.

Whenever the notation |x| is used for a vector we mean the
maximum absolute value the elements of x.

As is conventional in analytic number theory, we write e(z)
for e27iz
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Hasse principle

Definition
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Hasse principle

Definition

A polynomial F € Z[x1, ..., xs| is said to be an integral
homogeneous form of degree d if for all A € C it satisfies the
equation

F(Ax) = M\F(x).
We will say the Hasse principle holds for
F(x) =0, (1.1)
if the existence of solutions to (1.1) in (R\0)* and (Q,)\0)* for

every prime p implies the existence of a solution to (1.1) where
x € (Z\0)".
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Hasse principle: History

Theorem (Hasse-Minkowski, 1923)

The Hasse principle holds for quadratic forms.
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Hasse principle: History
Theorem (Hasse-Minkowski, 1923)
The Hasse principle holds for quadratic forms.

Theorem (Heath-Brown,1983)

If F is a non-singular cubic form in s variables then it satisfies the
Hasse principle whenever s > 10.
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Hasse principle: History
Theorem (Hasse-Minkowski, 1923)
The Hasse principle holds for quadratic forms.

Theorem (Heath-Brown,1983)

If F is a non-singular cubic form in s variables then it satisfies the
Hasse principle whenever s > 10.

Theorem (Marmon & Vishe, 2019)

If F is a non-singular quartic form in s variables then it satisfies
the Hasse principle whenever s > 30.
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Hasse principle: History

Theorem (Hasse-Minkowski, 1923)

The Hasse principle holds for quadratic forms.

Theorem (Heath-Brown,1983)

If F is a non-singular cubic form in s variables then it satisfies the
Hasse principle whenever s > 10.

Theorem (Marmon & Vishe, 2019)

If F is a non-singular quartic form in s variables then it satisfies
the Hasse principle whenever s > 30.

Theorem (Birch,1961)

If F is a non-singular form of degree d in s variables then it
satisfies the Hasse principle whenever s > (d — 1)2¢.
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Weighted Homogeneous Forms

Definition
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Weighted Homogeneous Forms

Definition

Question
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Trivial Considerations

trivially

Let F(x) be a weighted form of degree d with weights w, then
G(x) = F(q",

%)
is a homogeneous form of degree d. One may then apply Birch's
results and conclude that G (and hence F) satisfies the Hasse
principle whenever s > (d — 1)29.
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Trivial Considerations

Let F(x) be a weighted form of degree d with weights w, then
trivially

G(x) = F(x{",...,x)

’ s

is a homogeneous form of degree d. One may then apply Birch's
results and conclude that G (and hence F) satisfies the Hasse
principle whenever s > (d — 1)29.

Goal

Use the weights w to establish a non-trivial statement about
weighted forms.
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Work Towards This Goal

Let d > 2 be given, then if we let H(") denote a form of degree n
Foq € ZZ[Xi,..

one may investigate the zeros of the weighted form of degree 2d,
9 X5 Y1y e e ,)/52] deﬁned by

1<i<sy

Fa(xiy) = HAX) + Y xH D (y) + HC(y).
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Work Towards This Goal

Let d > 2 be given, then if we let H(") denote a form of degree n
Foq € Z[Xl, ..

one may investigate the zeros of the weighted form of degree 2d,
9 X5 Y1y e e ,)/52] deﬁned by

Notice

1<i<sy

Fa(xiy) = HAX) + Y xH D (y) + HC(y).

Fyq is a general weighted form of degree 2d in which the variable
weights are either 1 or d.

«4O0>» «Fr «E»

<

il
v

Dae
7/17



Key ldea

Since quadratic forms are diagonalizable and one may complete the
square to separate variables of different weights.
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Key ldea

Since quadratic forms are diagonalizable and one may complete the
square to separate variables of different weights. Hence, there

exists a non-singular change of variables x — u and y — v and a

homogeneous polynomial H(?29) of degree 2d for which Fay is an
integer multiple of

Z aju? + HC(v).

1<i<sy
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Our Results

We will omit some technical details here for the sake of brevity.
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Our Results

Let

R(X;B1,B2) = #{(x,y) € X}/2B;1 x XV/4B, : Foq(x;y) = 0}
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Our Results

Let

R(X; B1,B5) = #{(x,y) € XV/2B x XV/4%B, : Foy(x;y) = 0}
Theorem Part 2 (F, 2024)

«O» «Fr «=>»

«E»

Da
10/17



Proof Method

method and write

R(X;B1,B7) =

We estimate R(X;B1,B>) via the Hardy-Littlewood circle
1

0

> e(aFa(xy))da
xeX1/28,

yeXx1/43,
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Proof Method

method and write

R(X;B1,B7) =

We estimate R(X;B1,B>) via the Hardy-Littlewood circle
1

0

> e(aFa(xy))da
xeX1/28,

yeXx1/43,

= (Major arcs) + (Minor arcs)
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Proof Method

method and write

We estimate R(X;B1,B>) via the Hardy-Littlewood circle
1

R(X;B1,B7) =

0

> e(aFa(xy))da
xeX1/28,
yeX1/48,

= (Major arcs) + (Minor arcs)
the development of two key lemmas.

As is standard the minor arcs are the difficult part and require
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Summary of First Key Lemma

Lemma #1

sums.

This was shown via the previously mentioned completing the squares
technique and an application of standard bounds on linear exponential
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Second Key Lemma

Let G e Q, G2

) € R. Also, let H) ¢ Q[yl,yg] be a
non-degenerate homogeneous quartic, and H(2

G R[yl y2] be a
non-degenerate homogeneous quadratic. Then for positive
numbers P, Q, we define the exponential sums

()

= Z e(aGMx? + 6Px),

Ix|<P

ha) = Y e (aHD(y) + HA(y)).

lyl<@Q

Then for large P, Q we have the following mean value bound
lg(@)*h(a)l3 < PQ*® + Q*P,

where the implicit constant is dependent only on G() and the
coefficients of H(),
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Proof Sketch of Key Lemma #2
Simplification: Assume
g(a)

Ix|<P

lyl<@Q

Y e(@d),and h(a) = Y e(a(yf +3)),
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Proof Sketch of Key Lemma #2
Simplification: Assume
g(a)

Ix|<P

> e(ax®),and h(e) = > e(alyi + 7)),
lyl<@

then by orthogonality one has that ||g(a)?h(a)||3 counts the

yal,-- - |yal < Q for which

number of integers xi, x2, y1, ¥2, y3, ya satisfying |xi],|x2| < P and
2

p)
Then we split into two cases.

-3 =yt —y3+ys

78
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Proof Sketch of Key Lemma #2
Simplification: Assume
g(a)

Ix|<P

> e(ax®),and h(e) = > e(alyi + 7)),
lyl<@

then by orthogonality one has that ||g(a)?h(a)||3 counts the

yal,-- - |yal < Q for which

number of integers xi, x2, y1, ¥2, y3, ya satisfying |xi],|x2| < P and
2

p)
Then we split into two cases.

-3 =yt —y3+ys

4

Ya-
Case 1: |x1| = |x|
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Proof Sketch of Key Lemma #2
Simplification: Assume
g(a)

Ix|<P

> e(ax®),and h(e) = > e(alyi + 7)),
lyl<@

then by orthogonality one has that ||g(a)?h(a)||3 counts the

yal,-- - |yal < Q for which

number of integers xi, x2, y1, ¥2, y3, ya satisfying |xi],|x2| < P and
2

p)
Then we split into two cases

-3 =yt —y3+ys

4

Ya-
Case 1: |x1| = |x|

Case 2: |x1| # |x2|
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Proof Sketch of Key Lemma #2

Case 1: If |x1| = |x2|, then there are 2P ways this can happen.
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Proof Sketch of Key Lemma #2

Case 1: If |x1| = |x2|, then there are 2P ways this can happen
We then count the number of solutions to
Vi—ys+ys—yi=0,

lemma is bounded by Q2*<.

this is by orthogonality equal to ||h(c)||3, which by Hua's
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Proof Sketch of Key Lemma #2

Case 1: If |x1| = |x2|, then there are 2P ways this can happen.
We then count the number of solutions to

W—Ys+ys—yi=0,

this is by orthogonality equal to ||h(c)||3, which by Hua's
lemma is bounded by Q2*<.

Case 2: If |x1| # |x2| then there are trivially at most (2@)*
choices for y1,...,ya
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Proof Sketch of Key Lemma #2

Case 1: If |x1| = |x2|, then there are 2P ways this can happen.
We then count the number of solutions to

Vi =i +ys—yi =0,
this is by orthogonality equal to ||h(c)||3, which by Hua's

lemma is bounded by Q2*<.

Case 2: If |x1| # |x2| then there are trivially at most (2@)*
choices for y1,...,ys. Since

X12 - x22 =(x1 + x)(a — x2) #0,

we may use a divisor estimate to deduce the number of
choices for x1, x» is bounded by P*.
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Future Pursuits

Question: Can we prove a general analogue of Birch's
of the weights w?

theorem for weighted homogeneous forms where we make use
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Future Pursuits

Question: Can we prove a general analogue of Birch's

theorem for weighted homogeneous forms where we make use
of the weights w?

Partial Answer: This problem appears to be beyond the scope

of our current techniques as we require some way to separate
the variables of large weight.
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Future Pursuits

Question: Can we prove a general analogue of Birch's

theorem for weighted homogeneous forms where we make use
of the weights w?

Partial Answer: This problem appears to be beyond the scope
of our current techniques as we require some way to separate
the variables of large weight.

Reasonable Question: What other classes of weighted
homogeneous forms can we investigate and use of the weights

w to save on the number of variables required by Birch's
Theorem.

A4O0> «Fr «E» «

il
v
it

DA
16/17



Thank you for listening!
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