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Notation

We begin with some notational conventions.

▶ Whenever ε appears in a statement, either implicitly or
explicitly, we assert that the statement holds for every ε > 0.

▶ Implicit constants in Vinogradov’s notation ≪ and ≫ may
depend on ε or the coefficients of fixed polynomials.

▶ Whenever the notation |x| is used for a vector we mean the
maximum absolute value the elements of x.

▶ As is conventional in analytic number theory, we write e(z)
for e2πiz .
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Hasse principle

Definition

A polynomial F ∈ Z[x1, . . . , xs ] is said to be an integral
homogeneous form of degree d if for all λ ∈ C it satisfies the
equation

F (λx) = λdF (x).

We will say the Hasse principle holds for

F (x) = 0, (1.1)

if the existence of solutions to (1.1) in (R\0)s and (Qp)\0)s for
every prime p implies the existence of a solution to (1.1) where
x ∈ (Z\0)s .
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Hasse principle: History

Theorem (Hasse-Minkowski,1923)

The Hasse principle holds for quadratic forms.

Theorem (Heath-Brown,1983)

If F is a non-singular cubic form in s variables then it satisfies the
Hasse principle whenever s ⩾ 10.

Theorem (Marmon & Vishe, 2019)

If F is a non-singular quartic form in s variables then it satisfies
the Hasse principle whenever s ⩾ 30.

Theorem (Birch,1961)

If F is a non-singular form of degree d in s variables then it
satisfies the Hasse principle whenever s > (d − 1)2d .
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Weighted Homogeneous Forms

Definition

We define a polynomial F ∈ Z[x1, . . . , xs ] to be an integral
weighted form of degree d if there exists a vector w ∈ Ns ,
satisfying (w1, . . . ,ws) = 1, for which the equation

F (λw1x1, . . . , λ
wsxs) = λdF (x1, . . . , xs),

holds for all complex λ. With this notation we say that the variable
xi has weight wi .

Question

What can be said about weighted integral forms?
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Trivial Considerations

Let F (x) be a weighted form of degree d with weights w, then
trivially

G (x) = F (xw1
1 , . . . , xws

s )

is a homogeneous form of degree d . One may then apply Birch’s
results and conclude that G (and hence F ) satisfies the Hasse
principle whenever s > (d − 1)2d .

Goal

Use the weights w to establish a non-trivial statement about
weighted forms.
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Work Towards This Goal

Let d ⩾ 2 be given, then if we let H(n) denote a form of degree n
one may investigate the zeros of the weighted form of degree 2d ,
F2d ∈ Z [x1, . . . , xs1 , y1, . . . , ys2 ] defined by

F2d(x; y) = H(2)(x) +
∑

1⩽i⩽s1

xiH
(d)
i (y) + H(2d)(y).

Notice

F2d is a general weighted form of degree 2d in which the variable
weights are either 1 or d .
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Key Idea

Since quadratic forms are diagonalizable and one may complete the
square to separate variables of different weights.

Hence, there
exists a non-singular change of variables x 7→ u and y 7→ v and a
homogeneous polynomial H̃(2d) of degree 2d for which F2d is an
integer multiple of ∑

1⩽i⩽s1

aiu
2
i + H̃(2d)(v).
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Our Results

We will omit some technical details here for the sake of brevity.

Theorem Part 1 (F, 2024)

Let d = 2 and F2d ∈ Z [x1, . . . , xs1 , y1, . . . , ys2 ] be as previously
defined, and suppose the polynomials one gets after our change of
variables H̃(2d) are non-degenerate binary forms. Then

F2d(x; y) = 0

satisfies the Hasse principle as long as s1 and s2 satisfy

s2 > 16 when s1 = 0,

s2 > 10 when s1 = 1,

or
s1/2 + s2/4 > 2 when s1 ⩾ 2.
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Our Results

Let
R(X ;B1,B2) = #{(x, y) ∈ X 1/2B1 × X 1/4B2 : F2d(x; y) = 0}

Theorem Part 2 (F, 2024)

Let F2d ∈ Z [x1, . . . , xs1 , y1, . . . , ys2 ] satisfy the previous conditions.
Then if F2d(x) = 0 contains non-trivial non-singular local solutions
there exists boxes B1 ∈ [−1, 1]s1 and B2 ∈ [−1, 1]s2 for which one
has the asymptotic formula

R(X ;B1,B2) = X s1/2+s2/4−1(σ + o(1)),

where σ > 0 is the expected product of local densities.
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Proof Method

▶ We estimate R(X ;B1,B2) via the Hardy-Littlewood circle
method and write

R(X ;B1,B2) =

∫ 1

0

∑
x∈X 1/2B1

y∈X 1/4B2

e(αF2d(x; y))dα

= (Major arcs) + (Minor arcs)

▶ As is standard the minor arcs are the difficult part and require
the development of two key lemmas.
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Summary of First Key Lemma

Lemma #1

Under certain conditions one may bound the two dimensional exponential
sum ∑

1⩽x⩽P
1⩽y⩽Q

e(α(x2 + xH(d)(y) + H(2d)(y))),

via a bound on

(PQ)ε

 ∑
|x|≪P

e(αx2)

 ∑
|y |≪Q

e(αH̃(2d)(y))

 .

This was shown via the previously mentioned completing the squares
technique and an application of standard bounds on linear exponential
sums.
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Second Key Lemma

Let G (1) ∈ Q, G (2) ∈ R. Also, let H(1) ∈ Q[y1, y2] be a
non-degenerate homogeneous quartic, and H(2) ∈ R[y1, y2] be a
non-degenerate homogeneous quadratic. Then for positive
numbers P,Q, we define the exponential sums

g(α) =
∑
|x |⩽P

e(αG (1)x2 + G (2)x),

h(α) =
∑
|y|⩽Q

e
(
αH(1)(y) + H(2)(y)

)
.

Then for large P,Q we have the following mean value bound

∥g(α)2h(α)∥22 ≪ PQ2+ε + Q4Pε,

where the implicit constant is dependent only on G (1) and the
coefficients of H(1).
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Proof Sketch of Key Lemma #2

Simplification: Assume

g(α) =
∑
|x |⩽P

e(αx2), and h(α) =
∑
|y|⩽Q

e(α(y41 + y42 )),

then by orthogonality one has that ∥g(α)2h(α)∥22 counts the
number of integers x1, x2, y1, y2, y3, y4 satisfying |x1|, |x2| ⩽ P and
|y1|, . . . , |y4| ⩽ Q for which

x21 − x22 = y41 − y42 + y43 − y44 .

Then we split into two cases.

▶ Case 1: |x1| = |x2|
▶ Case 2: |x1| ≠ |x2|
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Proof Sketch of Key Lemma #2

▶ Case 1: If |x1| = |x2|, then there are 2P ways this can happen.

We then count the number of solutions to

y41 − y42 + y43 − y44 = 0,

this is by orthogonality equal to ∥h(α)∥22, which by Hua’s
lemma is bounded by Q2+ε.

▶ Case 2: If |x1| ≠ |x2| then there are trivially at most (2Q)4

choices for y1, . . . , y4. Since

x21 − x22 = (x1 + x2)(x1 − x2) ̸= 0,

we may use a divisor estimate to deduce the number of
choices for x1, x2 is bounded by Pε.
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Future Pursuits

▶ Question: Can we prove a general analogue of Birch’s
theorem for weighted homogeneous forms where we make use
of the weights w?

▶ Partial Answer: This problem appears to be beyond the scope
of our current techniques as we require some way to separate
the variables of large weight.

▶ Reasonable Question: What other classes of weighted
homogeneous forms can we investigate and use of the weights
w to save on the number of variables required by Birch’s
Theorem.
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Thank you for listening!
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