A Quantitative Hasse principle for Weighted Quartic Forms

Daniel Flores

Purdue University
2024 AMS Spring Central Sectional
flore205@purdue.edu

April 26, 2024

Notation

We begin with some notational conventions.

Notation

We begin with some notational conventions.

- Whenever ε appears in a statement, either implicitly or explicitly, we assert that the statement holds for every $\varepsilon>0$.

Notation

We begin with some notational conventions.

- Whenever ε appears in a statement, either implicitly or explicitly, we assert that the statement holds for every $\varepsilon>0$.
- Implicit constants in Vinogradov's notation < and > may depend on ε or the coefficients of fixed polynomials.

Notation

We begin with some notational conventions.

- Whenever ε appears in a statement, either implicitly or explicitly, we assert that the statement holds for every $\varepsilon>0$.
$>$ Implicit constants in Vinogradov's notation < and > may depend on ε or the coefficients of fixed polynomials.
$>$ Whenever the notation $|\mathbf{x}|$ is used for a vector we mean the maximum absolute value the elements of \mathbf{x}.

Notation

We begin with some notational conventions.

- Whenever ε appears in a statement, either implicitly or explicitly, we assert that the statement holds for every $\varepsilon>0$.
$>$ Implicit constants in Vinogradov's notation < and > may depend on ε or the coefficients of fixed polynomials.
$>$ Whenever the notation $|\mathbf{x}|$ is used for a vector we mean the maximum absolute value the elements of \mathbf{x}.
- As is conventional in analytic number theory, we write $e(z)$ for $e^{2 \pi i z}$.

Hasse principle

Definition

A polynomial $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]$ is said to be an integral homogeneous form of degree d if for all $\lambda \in \mathbb{C}$ it satisfies the equation

$$
F(\lambda \mathbf{x})=\lambda^{d} F(\mathbf{x}) .
$$

Hasse principle

Definition

A polynomial $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]$ is said to be an integral homogeneous form of degree d if for all $\lambda \in \mathbb{C}$ it satisfies the equation

$$
F(\lambda \mathbf{x})=\lambda^{d} F(\mathbf{x}) .
$$

We will say the Hasse principle holds for

$$
\begin{equation*}
F(\mathbf{x})=0 \tag{1.1}
\end{equation*}
$$

if the existence of solutions to (1.1) in $(\mathbb{R} \backslash 0)^{s}$ and $\left.\left(\mathbb{Q}_{p}\right) \backslash 0\right)^{s}$ for every prime p implies the existence of a solution to (1.1) where $x \in(\mathbb{Z} \backslash 0)^{s}$.

Hasse principle: History

Theorem (Hasse-Minkowski,1923)
The Hasse principle holds for quadratic forms.

Hasse principle: History

Theorem (Hasse-Minkowski,1923)
The Hasse principle holds for quadratic forms.
Theorem (Heath-Brown,1983)
If F is a non-singular cubic form in s variables then it satisfies the Hasse principle whenever $s \geqslant 10$.

Hasse principle: History

Theorem (Hasse-Minkowski,1923)
The Hasse principle holds for quadratic forms.
Theorem (Heath-Brown,1983)
If F is a non-singular cubic form in s variables then it satisfies the Hasse principle whenever $s \geqslant 10$.

Theorem (Marmon \& Vishe, 2019)
If F is a non-singular quartic form in s variables then it satisfies the Hasse principle whenever $s \geqslant 30$.

Hasse principle: History

Theorem (Hasse-Minkowski,1923)
The Hasse principle holds for quadratic forms.
Theorem (Heath-Brown,1983)
If F is a non-singular cubic form in s variables then it satisfies the Hasse principle whenever $s \geqslant 10$.

Theorem (Marmon \& Vishe, 2019)
If F is a non-singular quartic form in s variables then it satisfies the Hasse principle whenever $s \geqslant 30$.

Theorem (Birch,1961)

If F is a non-singular form of degree d in s variables then it satisfies the Hasse principle whenever $s>(d-1) 2^{d}$.

Weighted Homogeneous Forms

Definition

We define a polynomial $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]$ to be an integral weighted form of degree d if there exists a vector $\mathbf{w} \in \mathbb{N}^{s}$, satisfying $\left(w_{1}, \ldots, w_{s}\right)=1$, for which the equation

$$
F\left(\lambda^{w_{1}} x_{1}, \ldots, \lambda^{w_{s}} x_{s}\right)=\lambda^{d} F\left(x_{1}, \ldots, x_{s}\right),
$$

holds for all complex λ. With this notation we say that the variable x_{i} has weight w_{i}.

Weighted Homogeneous Forms

Definition

We define a polynomial $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]$ to be an integral weighted form of degree d if there exists a vector $\mathbf{w} \in \mathbb{N}^{s}$, satisfying $\left(w_{1}, \ldots, w_{s}\right)=1$, for which the equation

$$
F\left(\lambda^{w_{1}} x_{1}, \ldots, \lambda^{w_{s}} x_{s}\right)=\lambda^{d} F\left(x_{1}, \ldots, x_{s}\right),
$$

holds for all complex λ. With this notation we say that the variable x_{i} has weight w_{i}.

Question

What can be said about weighted integral forms?

Trivial Considerations

Let $F(\mathbf{x})$ be a weighted form of degree d with weights \mathbf{w}, then trivially

$$
G(\mathbf{x})=F\left(x_{1}^{w_{1}}, \ldots, x_{s}^{w_{s}}\right)
$$

is a homogeneous form of degree d. One may then apply Birch's results and conclude that G (and hence F) satisfies the Hasse principle whenever $s>(d-1) 2^{d}$.

Trivial Considerations

Let $F(\mathbf{x})$ be a weighted form of degree d with weights \mathbf{w}, then trivially

$$
G(\mathbf{x})=F\left(x_{1}^{w_{1}}, \ldots, x_{s}^{w_{s}}\right)
$$

is a homogeneous form of degree d. One may then apply Birch's results and conclude that G (and hence F) satisfies the Hasse principle whenever $s>(d-1) 2^{d}$.

Goal

Use the weights w to establish a non-trivial statement about weighted forms.

Work Towards This Goal

Let $d \geqslant 2$ be given, then if we let $H^{(n)}$ denote a form of degree n one may investigate the zeros of the weighted form of degree $2 d$, $F_{2 d} \in Z\left[x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right]$ defined by

$$
F_{2 d}(\mathbf{x} ; \mathbf{y})=H^{(2)}(\mathbf{x})+\sum_{1 \leqslant i \leqslant s_{1}} x_{i} H_{i}^{(d)}(\mathbf{y})+H^{(2 d)}(\mathbf{y}) .
$$

Work Towards This Goal

Let $d \geqslant 2$ be given, then if we let $H^{(n)}$ denote a form of degree n one may investigate the zeros of the weighted form of degree $2 d$, $F_{2 d} \in Z\left[x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right]$ defined by

$$
F_{2 d}(\mathbf{x} ; \mathbf{y})=H^{(2)}(\mathbf{x})+\sum_{1 \leqslant i \leqslant s_{1}} x_{i} H_{i}^{(d)}(\mathbf{y})+H^{(2 d)}(\mathbf{y}) .
$$

Notice

$F_{2 d}$ is a general weighted form of degree $2 d$ in which the variable weights are either 1 or d.

Key Idea

Since quadratic forms are diagonalizable and one may complete the square to separate variables of different weights.

Key Idea

Since quadratic forms are diagonalizable and one may complete the square to separate variables of different weights. Hence, there exists a non-singular change of variables $\mathbf{x} \mapsto \mathbf{u}$ and $\mathbf{y} \mapsto \mathbf{v}$ and a homogeneous polynomial $\tilde{H}^{(2 d)}$ of degree $2 d$ for which $F_{2 d}$ is an integer multiple of

$$
\sum_{1 \leqslant i \leqslant s_{1}} a_{i} u_{i}^{2}+\tilde{H}^{(2 d)}(\mathbf{v}) .
$$

Our Results

We will omit some technical details here for the sake of brevity.

Our Results

We will omit some technical details here for the sake of brevity．
Theorem Part 1 （F，2024）
Let $d=2$ and $F_{2 d} \in Z\left[x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right]$ be as previously defined，and suppose the polynomials one gets after our change of variables $\tilde{H}^{(2 d)}$ are non－degenerate binary forms．Then

$$
F_{2 d}(\mathbf{x} ; \mathbf{y})=0
$$

satisfies the Hasse principle as long as s_{1} and s_{2} satisfy

Our Results

We will omit some technical details here for the sake of brevity.
Theorem Part 1 (F, 2024)
Let $d=2$ and $F_{2 d} \in Z\left[x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right]$ be as previously defined, and suppose the polynomials one gets after our change of variables $\tilde{H}^{(2 d)}$ are non-degenerate binary forms. Then

$$
F_{2 d}(\mathbf{x} ; \mathbf{y})=0
$$

satisfies the Hasse principle as long as s_{1} and s_{2} satisfy

$$
s_{2}>16 \text { when } s_{1}=0
$$

Our Results

We will omit some technical details here for the sake of brevity.
Theorem Part 1 (F, 2024)
Let $d=2$ and $F_{2 d} \in Z\left[x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right]$ be as previously defined, and suppose the polynomials one gets after our change of variables $\tilde{H}^{(2 d)}$ are non-degenerate binary forms. Then

$$
F_{2 d}(\mathbf{x} ; \mathbf{y})=0
$$

satisfies the Hasse principle as long as s_{1} and s_{2} satisfy

$$
\begin{aligned}
& s_{2}>16 \text { when } s_{1}=0, \\
& s_{2}>10 \text { when } s_{1}=1,
\end{aligned}
$$

Our Results

We will omit some technical details here for the sake of brevity．
Theorem Part 1 （F，2024）
Let $d=2$ and $F_{2 d} \in Z\left[x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right]$ be as previously defined，and suppose the polynomials one gets after our change of variables $\tilde{H}^{(2 d)}$ are non－degenerate binary forms．Then

$$
F_{2 d}(\mathbf{x} ; \mathbf{y})=0
$$

satisfies the Hasse principle as long as s_{1} and s_{2} satisfy

$$
\begin{aligned}
& s_{2}>16 \text { when } s_{1}=0, \\
& s_{2}>10 \text { when } s_{1}=1,
\end{aligned}
$$

or

$$
s_{1} / 2+s_{2} / 4>2 \quad \text { when } \quad s_{1} \geqslant 2 .
$$

Our Results

$$
\begin{aligned}
& \text { Let } \\
& R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right)=\#\left\{(\mathbf{x}, \mathbf{y}) \in X^{1 / 2} \mathfrak{B}_{1} \times X^{1 / 4} \mathfrak{B}_{2}: F_{2 d}(\mathbf{x} ; \mathbf{y})=0\right\}
\end{aligned}
$$

Our Results

Let
$R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right)=\#\left\{(\mathbf{x}, \mathbf{y}) \in X^{1 / 2} \mathfrak{B}_{1} \times X^{1 / 4} \mathfrak{B}_{2}: F_{2 d}(\mathbf{x} ; \mathbf{y})=0\right\}$
Theorem Part 2 (F, 2024)
Let $F_{2 d} \in Z\left[x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right]$ satisfy the previous conditions. Then if $F_{2 d}(x)=0$ contains non-trivial non-singular local solutions there exists boxes $\mathfrak{B}_{1} \in[-1,1]^{s_{1}}$ and $\mathfrak{B}_{2} \in[-1,1]^{s_{2}}$ for which one has the asymptotic formula

$$
R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right)=X^{s_{1} / 2+s_{2} / 4-1}(\sigma+o(1)),
$$

where $\sigma>0$ is the expected product of local densities.

Proof Method

$>$ We estimate $R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ via the Hardy-Littlewood circle method and write

$$
R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right)=\int_{0}^{1} \sum_{\substack{x \in X^{1 / 2} \mathfrak{B}_{1} \\ y \in X^{1 / 4} \mathfrak{B}_{2}}} e\left(\alpha F_{2 d}(\mathbf{x} ; \mathbf{y})\right) \mathrm{d} \alpha
$$

Proof Method

$>$ We estimate $R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ via the Hardy-Littlewood circle method and write

$$
\begin{aligned}
R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right) & =\int_{0}^{1} \sum_{\substack{x \in X^{1 / 2} \mathfrak{B}_{1} \\
y \in X^{1 / 4} \mathfrak{B}_{2}}} e\left(\alpha F_{2 d}(\mathbf{x} ; \mathbf{y})\right) \mathrm{d} \alpha \\
& =(\text { Major arcs })+(\text { Minor arcs })
\end{aligned}
$$

Proof Method

- We estimate $R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ via the Hardy-Littlewood circle method and write

$$
\begin{aligned}
R\left(X ; \mathfrak{B}_{1}, \mathfrak{B}_{2}\right) & =\int_{0}^{1} \sum_{\substack{x \in X^{1 / 2} \mathfrak{B}_{1} \\
y \in X^{1 / 4} \mathfrak{B}_{2}}} e\left(\alpha F_{2 d}(\mathbf{x} ; \mathbf{y})\right) \mathrm{d} \alpha \\
& =(\text { Major arcs })+(\text { Minor arcs })
\end{aligned}
$$

- As is standard the minor arcs are the difficult part and require the development of two key lemmas.

Summary of First Key Lemma

Lemma \#1

Under certain conditions one may bound the two dimensional exponential sum

$$
\sum_{\substack{1<x \leqslant P \\ 1 \leqslant y \leqslant Q}} e\left(\alpha\left(x^{2}+x H^{(d)}(y)+H^{(2 d)}(y)\right)\right),
$$

via a bound on

$$
(P Q)^{\varepsilon}\left(\sum_{|x| \ll P} e\left(\alpha x^{2}\right)\right)\left(\sum_{|y|<Q} e\left(\alpha \tilde{H}^{(2 d)}(y)\right)\right) .
$$

This was shown via the previously mentioned completing the squares technique and an application of standard bounds on linear exponential sums.

Second Key Lemma

Let $G^{(1)} \in \mathbb{Q}, G^{(2)} \in \mathbb{R}$. Also, let $H^{(1)} \in \mathbb{Q}\left[y_{1}, y_{2}\right]$ be a non-degenerate homogeneous quartic, and $H^{(2)} \in \mathbb{R}\left[y_{1}, y_{2}\right]$ be a non-degenerate homogeneous quadratic. Then for positive numbers P, Q, we define the exponential sums

$$
\begin{gathered}
g(\alpha)=\sum_{|x| \leqslant P} e\left(\alpha G^{(1)} x^{2}+G^{(2)} x\right), \\
h(\alpha)=\sum_{|\mathbf{y}| \leqslant Q} e\left(\alpha H^{(1)}(\mathbf{y})+H^{(2)}(\mathbf{y})\right) .
\end{gathered}
$$

Then for large P, Q we have the following mean value bound

$$
\left\|g(\alpha)^{2} h(\alpha)\right\|_{2}^{2} \ll P Q^{2+\varepsilon}+Q^{4} P^{\varepsilon},
$$

where the implicit constant is dependent only on $G^{(1)}$ and the coefficients of $H^{(1)}$.

Proof Sketch of Key Lemma \#2

Simplification: Assume

$$
g(\alpha)=\sum_{|x| \leqslant P} e\left(\alpha x^{2}\right), \text { and } \quad h(\alpha)=\sum_{|y| \leqslant Q} e\left(\alpha\left(y_{1}^{4}+y_{2}^{4}\right)\right),
$$

Proof Sketch of Key Lemma \#2

Simplification: Assume

$$
g(\alpha)=\sum_{|x| \leqslant P} e\left(\alpha x^{2}\right), \text { and } \quad h(\alpha)=\sum_{|y| \leqslant Q} e\left(\alpha\left(y_{1}^{4}+y_{2}^{4}\right)\right),
$$

then by orthogonality one has that $\left\|g(\alpha)^{2} h(\alpha)\right\|_{2}^{2}$ counts the number of integers $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}$ satisfying $\left|x_{1}\right|,\left|x_{2}\right| \leqslant P$ and $\left|y_{1}\right|, \ldots,\left|y_{4}\right| \leqslant Q$ for which

$$
x_{1}^{2}-x_{2}^{2}=y_{1}^{4}-y_{2}^{4}+y_{3}^{4}-y_{4}^{4} .
$$

Then we split into two cases.

Proof Sketch of Key Lemma \#2

Simplification: Assume

$$
g(\alpha)=\sum_{|x| \leqslant P} e\left(\alpha x^{2}\right), \text { and } \quad h(\alpha)=\sum_{|y| \leqslant Q} e\left(\alpha\left(y_{1}^{4}+y_{2}^{4}\right)\right),
$$

then by orthogonality one has that $\left\|g(\alpha)^{2} h(\alpha)\right\|_{2}^{2}$ counts the number of integers $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}$ satisfying $\left|x_{1}\right|,\left|x_{2}\right| \leqslant P$ and $\left|y_{1}\right|, \ldots,\left|y_{4}\right| \leqslant Q$ for which

$$
x_{1}^{2}-x_{2}^{2}=y_{1}^{4}-y_{2}^{4}+y_{3}^{4}-y_{4}^{4} .
$$

Then we split into two cases.
$>$ Case 1: $\left|x_{1}\right|=\left|x_{2}\right|$

Proof Sketch of Key Lemma \#2

Simplification: Assume

$$
g(\alpha)=\sum_{|x| \leqslant P} e\left(\alpha x^{2}\right), \text { and } \quad h(\alpha)=\sum_{|y| \leqslant Q} e\left(\alpha\left(y_{1}^{4}+y_{2}^{4}\right)\right),
$$

then by orthogonality one has that $\left\|g(\alpha)^{2} h(\alpha)\right\|_{2}^{2}$ counts the number of integers $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}$ satisfying $\left|x_{1}\right|,\left|x_{2}\right| \leqslant P$ and $\left|y_{1}\right|, \ldots,\left|y_{4}\right| \leqslant Q$ for which

$$
x_{1}^{2}-x_{2}^{2}=y_{1}^{4}-y_{2}^{4}+y_{3}^{4}-y_{4}^{4} .
$$

Then we split into two cases.

- Case 1: $\left|x_{1}\right|=\left|x_{2}\right|$
- Case 2: $\left|x_{1}\right| \neq\left|x_{2}\right|$

Proof Sketch of Key Lemma \#2

- Case 1: If $\left|x_{1}\right|=\left|x_{2}\right|$, then there are $2 P$ ways this can happen.

Proof Sketch of Key Lemma \#2

- Case 1: If $\left|x_{1}\right|=\left|x_{2}\right|$, then there are $2 P$ ways this can happen. We then count the number of solutions to

$$
y_{1}^{4}-y_{2}^{4}+y_{3}^{4}-y_{4}^{4}=0
$$

this is by orthogonality equal to $\|h(\alpha)\|_{2}^{2}$, which by Hua's lemma is bounded by $Q^{2+\varepsilon}$.

Proof Sketch of Key Lemma \#2

- Case 1: If $\left|x_{1}\right|=\left|x_{2}\right|$, then there are $2 P$ ways this can happen. We then count the number of solutions to

$$
y_{1}^{4}-y_{2}^{4}+y_{3}^{4}-y_{4}^{4}=0,
$$

this is by orthogonality equal to $\|h(\alpha)\|_{2}^{2}$, which by Hua's lemma is bounded by $Q^{2+\varepsilon}$.

- Case 2: If $\left|x_{1}\right| \neq\left|x_{2}\right|$ then there are trivially at most $(2 Q)^{4}$ choices for y_{1}, \ldots, y_{4}

Proof Sketch of Key Lemma \#2

- Case 1: If $\left|x_{1}\right|=\left|x_{2}\right|$, then there are $2 P$ ways this can happen. We then count the number of solutions to

$$
y_{1}^{4}-y_{2}^{4}+y_{3}^{4}-y_{4}^{4}=0
$$

this is by orthogonality equal to $\|h(\alpha)\|_{2}^{2}$, which by Hua's lemma is bounded by $Q^{2+\varepsilon}$.

- Case 2: If $\left|x_{1}\right| \neq\left|x_{2}\right|$ then there are trivially at most $(2 Q)^{4}$ choices for y_{1}, \ldots, y_{4}. Since

$$
x_{1}^{2}-x_{2}^{2}=\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right) \neq 0
$$

we may use a divisor estimate to deduce the number of choices for x_{1}, x_{2} is bounded by P^{ε}.

Future Pursuits

- Question: Can we prove a general analogue of Birch's theorem for weighted homogeneous forms where we make use of the weights \mathbf{w} ?

Future Pursuits

- Question: Can we prove a general analogue of Birch's theorem for weighted homogeneous forms where we make use of the weights \mathbf{w} ?
- Partial Answer: This problem appears to be beyond the scope of our current techniques as we require some way to separate the variables of large weight.

Future Pursuits

- Question: Can we prove a general analogue of Birch's theorem for weighted homogeneous forms where we make use of the weights w?
- Partial Answer: This problem appears to be beyond the scope of our current techniques as we require some way to separate the variables of large weight.
- Reasonable Question: What other classes of weighted homogeneous forms can we investigate and use of the weights w to save on the number of variables required by Birch's Theorem.

Thank you for listening!

