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Abstract. We derive, via the Hardy-Littlewood method, an asymptotic
formula for the number of integral zeros of a particular class of weighted
quartic forms under the assumption of non-singular local solubility. Our
polynomials F (x,y) ∈ Z[x1, . . . , xs1 , y1, . . . , ys2 ] satisfy the condition that
F (λ2x, λy) = λ4F (x,y). Our conclusions improve on those that would
follow from a direct application of the methods of Birch. For example, we
show that in many circumstances the expected asymptotic formula holds
when s1 ⩾ 2 and 2s1 + s2 > 8.

1. Introduction

Historically, the Hardy-Littlewood method has been largely successful when
employed to show the existence of simultaneous zeros to families of diagonal
polynomials. The most famous applications being those devoted to Waring’s
problem and the ternary Goldbach problem. This is mainly due to the well-
developed nature of the theory of exponential sums in one variable. More
generally, there has been progress toward applying the circle method to show
the existence of simultaneous zeros to families of forms. Most of these results
stem from the work of Birch [1], in which he uses the geometry of numbers to
obtain an analogue of Weyl’s inequality in the homogeneous setting with the
additional restriction that the dimension of the singular locus is not too large.
In these results the number of variables required grows exponentially with the
degree of these forms. In this paper we consider a slightly more general case
in which the polynomials of interest are integral weighted forms.

Definition 1.1. We define a polynomial F ∈ Z[x1, . . . , xs] to be an inte-
gral weighted form of degree d if there exists a vector w ∈ Ns, satisfying
(w1, . . . , ws) = 1, for which the equation

F (λw1x1, . . . , λ
wsxs) = λdF (x1, . . . , xs),

holds for all complex λ. With this notation we say that the variable xi has
weight wi.

We aim to leverage variables with large weight to achieve additional cancel-
lation over the minor arcs. This allows us to reduce the number of variables
needed to employ the circle method. In general, this problem is difficult with-
out an analogue Weyl’s inequality, such as that of Lemma 2.1 from [1], for
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weighted forms which takes into consideration the variables with large weight.
A natural starting point would be to investigate weighted forms of low de-
gree which are nearly diagonalizable, such that this problem may be tractable
using known methods. In this paper, our focus lies on a specific family of
weighted quartic forms. After establishing our main theorem, we provide a
concise overview of other challenges potentially receptive to these concepts in
section 6.

First, we develop some notation. Let s be a fixed natural number and
suppose for each 1 ⩽ k ⩽ s we are given integers 0 ⩽ ik, jk ⩽ 2 satisfying the
inequality ik + jk > 0 for each 1 ⩽ k ⩽ s. Due to the nature of the weighted
quartic form we consider here it is necessary to develop an indexing system for
our variables which groups them in a useful manner. We accomplish this by
denoting

xk = (xk,1, . . . , xk,ik) and yk = (yk,1, . . . , yk,jk).

We then define the integral weighted quartic forms

Fk(xk;yk) = H
(2)
k (xk) +

∑
1⩽l⩽ik

H
(2,l)
k (yk)xk,l +H

(4)
k (yk), (1.1)

where H
(2)
k ∈ Z[x1, . . . , xik ] and H

(2,l)
k ∈ Z[y1, . . . , yjk ] are quadratic forms, and

H
(4)
k ∈ Z[y1, . . . , yjk ] are quartic forms. It will be important later to reference

the coefficients of the polynomial H
(2)
k (xk), we do this via the labeling

H
(2)
k (x1, x2) =

∑
0⩽i⩽2

ak,ix
i
1x

2−i
2 , (1.2)

where if ik = 1 then we simply take ak,1 = ak,2 = 0 and similarly if ik = 0
then ak,0 = ak,1 = ak,2 = 0. We finish this setup by implementing one final
notational convention, we denote

X = (x1, . . . ,xs) and Y = (y1, . . . ,ys).

Upon setting

s1 =
∑
1⩽k⩽s

ik and s2 =
∑
1⩽k⩽s

jk,

one sees that X is s1-dimensional and Y is s2-dimensional and we may some-
times write these in the form

X = (x1, . . . , xs1) and Y = (y1, . . . , ys2).

We now define the integral weighted quartic form of interest to be

Φ(X;Y) = F1(x1;y1) + · · ·+ Fs(xs;ys). (1.3)

One sees that Φ is an integral weighted form where s1 counts the number of
variables with weight two and similarly s2 counts the number of variables with
weight one. If one were to look at the related form

Φ̃(X;Y) = Φ(x2
1, . . . , x

2
s1
; y1, . . . , ys2),

then Birch’s methods show us that supposing Φ̃ is non-singular it satisfies the
smooth Hasse principle (as in [2]) as soon as s1 + s2 is at least 49, this can
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even be improved to 30 variables by a result of Marmon and Vishe [4]. This
then allows us to say that our weighted form Φ also satisfies the smooth Hasse
principle as soon as s1 + s2 ≥ 30. We improve on this as by Theorem 1.2 our
weighted form Φ may satisfy the smooth Hasse principle with as little as six
variables.

Take B(1) and B(2) be cubes of equal side lengths which are at most one, in
Rs1 and Rs2 . We define R(X; Φ;B(1),B(2)) to be the number of integer zeros
of Φ where

X ∈ X1/2B(1) and Y ∈ X1/4B(2).

We call a binary form F (x, y) of degree d > 1 degenerate if there exist complex
numbers α, β such that F (x, y) = (αx+βy)d. We may then, naturally, call the
polynomials Fk from (1.1) non-degenerate if every binary form used to define
it is non-degenerate. With this notation in place we are now ready to state
our main result.

Theorem 1.2. Let Φ be an integral weighted quartic form of the type defined
in (1.3) where for each 1 ⩽ k ⩽ s the polynomial Fk is non-degenerate and the

coefficient ak,0 of H
(2)
k is nonzero provided that ik > 0. Then as long as s1 and

s2 satisfy

s2 > 16 when s1 = 0,

s2 > 10 when s1 = 1,

or

s1/2 + s2/4 > 2 when s1 ⩾ 2,

then we have the asymptotic formula

R(X; Φ;B(1),B(2)) = Xs1/2+s2/4−1

(
σ∞(B(1),B(2))

∏
p

σp + o(1)

)
,

where

σp = lim
h→∞

ph(1−s1−s2)#
{
(X,Y) ∈ (Z/phZ)s1+s2 : Φ(X;Y) ≡ 0 mod ph

}
,

and

σ∞(B(1),B(1)) = lim
Q→∞

∫
|β|⩽Q

∫
B(2)

∫
B(1)

e(βΦ(γ;ρ)) dγ dρ dβ.

Additionally, if we assume Φ has non-singular solutions locally everywhere then∏
p

σp ≍ 1,

and there exists a choice of cubes B(1) and B(2) for which one may show that
σ∞(B(1),B(2)) ≍ 1.

One sees that when s1 ≥ 2 the conclusion of Theorem 1.2 is near-optimal
with respect to the number of variables required by the Hardy-Littlewood circle
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method. This may be seen by looking at the case where there are no mixed
terms and every coefficient is 1, that is to say

Φ(X;Y) =
∑

1⩽i⩽s1

x2
i +

∑
1⩽j⩽s2

y4j .

This diagonal case is a matter of classical theory. We refer the interested
reader to section 15 of [7] for further reading. From this classical case we have
by the convexity bound that the expected asymptotic formula from Theorem
1.2 may only be obtained via a conventional circle method approach when
s1/2 + s2/4 > 2.

As is the case with many applications of the circle method the main difficulty
we encounter are the minor arcs, here we give a rough outline of our methods
for the minor arcs. Although we assume that s2 is even for the purpose of
outlining our strategy, our proof also covers the case when s2 is odd. We begin
by using Proposition 3.1 and Lemma 3.2 to essentially remove all the monomi-
als which contain variables of mixed weights and additionally diagonalize the
variables with weight two because it cost us no extra effort to do so. We may
do this at the cost of losing a factor of (logX)s1 which is ultimately harmless.
This process, in essence, allows us to bound the minor arc contribution rele-
vant to our problem by bounding the minor arc contribution of an associated
counting function. The latter function counts the number of integral zeros of
the weighted quartic form

Φ̃(X;Y) =
∑

1⩽i⩽s1

aix
2
i +

∑
1⩽j⩽s2/2

H
(4)
j (y2j−1, y2j),

where for each j, the binary quartic form H
(4)
j is non-degenerate and our

solutions satisfy

X ∈ X1/2B̃(1) and Y ∈ X1/4B̃(2),

where B̃(1) and B̃(2) are slight modifications of the initial boxes B(1) and B(2).
At this point, we can easily get enough savings in the minor arcs if s1 ≥ 4.
When s1 = 0 a generalized version of this problem has already been looked
at by Wooley [8] where his lower bound of s2 > 16 agrees with ours. The
interesting cases are when 1 ⩽ s1 ⩽ 3. We take care of these cases via the use
of the optimal mean value estimate, Lemma 3.3.
Acknowledgements: During the course of the work on this paper, the author
was supported by the NSF grant DMS-2001549 under the supervision of Trevor
Wooley. The author is grateful for support from Purdue University. Addition-
ally, the author would like to thank Trevor Wooley for suggesting this area
of research and for his mentorship throughout the process. The author also
extends sincere appreciation to the reviewer for their detailed and constructive
feedback, which significantly improved the manuscript.

2. Preliminary Setup

Our basic parameter is X, an (eventually) large positive number. Whenever
ε appears in a statement, either implicitly or explicitly, we assert that the
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statement holds for every ε > 0. In this paper, implicit constants in Vino-
gradov’s notation ≪ and ≫ may depend on ε and on the coefficients of the
polynomial Φ. We also make use of the vector notation x = (x1, . . . , xr) where
r is dependent on the context of the argument. Whenever the notation |x| is
used for a vector x we mean maxi |xi|. Also, when the notation ∥f∥p is used for
an integrable function f we mean the usual norm on Lp([0, 1]), and we write
∥f∥Lp(E) to denote the Lp(E) norm where E is some real measurable set. As
is conventional in analytic number theory, we write e(z) for e2πiz.

Consider cubes B(1) ⊂ Rs1 and B(2) ⊂ Rs2 , each having side length 2η
for some positive η ⩽ 1. Let γ∗ ∈ [−1, 1]s1 denote the center of B(1) and
ρ∗ ∈ [−1, 1]s2 denote the center of B(2). Following the same indexing system
that was set up in the introduction, we write

γ∗ = (γ∗
1, . . . ,γ

∗
s) and ρ∗ = (ρ∗

1, . . . ,ρ
∗
s),

where γ∗
k = (γk,1, . . . , γk,ik) ∈ Rik and ρ∗

k = (ρk,1, . . . , ρk,jk) ∈ Rjk . Now, for a
given set E ⊂ R, we define the boxes

B
(1)
k (X,E) =

{
γ ∈ Eik :

∣∣∣ γ

X1/2
− γ∗

k

∣∣∣ < η
}
,

and

B
(2)
k (X,E) =

{
ρ ∈ Ejk :

∣∣∣ ρ

X1/4
− ρ∗

k

∣∣∣ < η
}
.

Then we define

fk(α) =
∑

x∈B(1)
k (X,Z)

y∈B(2)
k (X,Z)

e (αFk(x;y)) , f(α) =
∏

1⩽k⩽s

fk(α), (2.1)

Sk(q, a) =
∑

r∈(Z/qZ)ik
s∈(Z/qZ)jk

e

(
a

q
Fk(r; s)

)
, S(q, a) =

∏
1⩽k⩽s

Sk(q, a), (2.2)

and

vk(X, β) =

∫
γ∈B(1)

k (X,R)
ρ∈B(2)

k (X,R)

e (βFk(γ;ρ)) dγ dρ, I(X, β) =
∏

1⩽k⩽s

vk(X, β). (2.3)

With this notation in hand we have by orthogonality

R(X; Φ;B(1),B(2)) =

∫ 1

0

f(α) dα. (2.4)

We begin by first estimating the exponential sums fk near rational points.

Lemma 2.1. Given a ∈ Z and q ∈ N and any α ∈ R we have that

fk(α) = q−(ik+jk)Sk(q, a)vk(X,α− a/q) +O
(
X ik/2+jk/4−1/4 (q + |qα− a|X)

)
.

Proof. Let k be fixed, then we may parametrize x ∈ B
(1)
k and y ∈ B

(2)
k by

writing

x = qx′ + r, y = qy′ + s.
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Then upon setting β = α− a/q one obtains

fk(α) =
∑

(r,s)∈(Z/qZ)ik+jk

e

(
a

q
Fk(r; s)

) ∑
x′∈B(1)

k (r)

y′∈B(2)
k (s)

e (βFk(qx
′ + r; qy′ + s)) , (2.5)

where

B
(1)
k (r) =

{
x′ ∈ Zik :

∣∣∣∣qx′ + r

X1/2
− γ∗

k

∣∣∣∣ < η

}
,

and

B
(2)
k (s) =

{
y′ ∈ Zjk :

∣∣∣∣qy′ + r

X1/4
− ρ∗

k

∣∣∣∣ < η

}
.

Then by making use of the mean value theorem as in [3, Lemma 4.2] and
noting that 0 < ik + jk, we obtain that inner sum over x′ and y′ in equation
2.5 is equal to

q−(ik+jk)vk(X, β) +O

(
X ik/2+jk/4−1/4

qik+jk−1
(1 + |β|X)

)
.

Upon substituting this into (2.5) we obtain the desired result. □

For any δ > 0 and pair a ∈ Z, q ∈ N we define

Mδ(q, a) = {α ∈ [0, 1) : |α− a/q| ⩽ Xδ−1},
and so our major arcs are defined as

Mδ =
⋃

0⩽a⩽q⩽Xδ

(a,q)=1

Mδ(q, a),

with the minor arcs being mδ = [0, 1)\Mδ. With our major/minor arcs es-
tablished we immediately obtain, via Lemma 2.1 and equation (2.1), a good
estimate for the exponential sum f(α) over the major arcs.

Corollary 2.2. Given a ∈ Z and q ∈ N and any α ∈ Mδ(q, a) we have that

f(α) = q−(s1+s2)S(q, a)I(X,α− a/q) +O
(
Xs1/2+s2/4+2δ−1/4

)
.

Next, we define

S(Q) =

Q∑
q=1

q∑
a=1

(a,q)=1

q−(s1+s2)S(q, a),

J(Q,X) =

∫
|β|⩽QX−1

I(X, β) dβ.

We conclude with a Lemma.

Lemma 2.3. For 0 < δ < 1/20 the asymptotic formula∫
Mδ

f(α) dα = S(Xδ)J(Xδ, 1)Xs1/2+s2/4−1 + o(Xs1/2+s2/4−1),

holds
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Proof. By applying Corollary 2.2 to each interval in the major arcs and noting
that the measure of the major arcs is O(X3δ−1) we see that the major arc
contribution is equal to∑

1⩽a⩽q⩽Xδ

(a,q)=1

q−(s1+s2)S(q, a)

∫
|α−a/q|⩽Xδ−1

I(X,α− a/q) dα + o(Xs1/2+s2/4−1).

Via the substitution β = α − a/q we note that the inner integral is now
independent of a, q. Thus we see that∫

Mδ

f(α) dα = S(Xδ)J(Xδ, X) + o(Xs1/2+s2/4−1).

All that is left to show is that

J(Xδ, X) = J(Xδ, 1)Xs1/2+s2/4−1.

One establishes this by first recalling (1.3) and note that via a change of
variables we have

I(X, β) = Xs1/2+s2/4I(1, Xβ),

whence

J(Xδ, X) = Xs1/2+s2/4

∫
|β|⩽Xδ−1

I(1, Xβ) dβ

= Xs1/2+s2/4−1

∫
|β′|⩽Xδ

I(1, β′) dβ′

= Xs1/2+s2/4−1J(Xδ, 1).

□

3. The Minor Arcs

Before we begin, some notation must be established. Given any particular
1 ⩽ k ⩽ s, let Mk be the largest coefficient in absolute value of the polynomial
Fk, and then define

M = max
1⩽k⩽s

20M2
k . (3.1)

This number will be useful later. Referencing our labeling scheme for the

coefficients of H
(2)
k as in (1.2), we define the constant ∆k = a2k,1−4ak,0ak,2 and

the polynomial

δk(v) = ak,1H
(2,1)
k (v)− 2ak,0H

(2,2)
k (v).

It is important to note that by our hypothesis in Theorem 1.2, we have that
if ik = 2 then ak,0 and ∆k are nonzero, and if ik = 1 then we only have that
ak,0 is nonzero. It is important that we now develop robust notation which
will allow us to concisely state our results regardless of which situation we
find ourselves in, it is for this reason that we take some time to establish the
following quantities.
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For any b ∈ Z2 and ξ ∈ R2 we define

χ
(i)
k (b, ξ) =

{
b1

2ak,0
−∆kξ1, when i = 1,

ak,1b1
2ak,0∆k

− ak,1ξ1 − b2
∆k

+ ξ2, when i = 2.

Also, for any set E ⊂ R, real variables Y, Z, and γ ∈ Rik we define the sets
Bk(Y, Z,E,γ) ⊂ Eik to be

{0} when ik = 0,{
b1 ∈ E :

∣∣∣ b1
2ak,0Z1/2 − γ1

∣∣∣ ⩽ Y
}

when ik = 1,{
(b1, b2) ∈ E2 :

∣∣∣ b1
2ak,0∆kZ1/2 − γ1

∣∣∣ ⩽ Y,
∣∣∣ b2
∆kZ1/2 − γ2

∣∣∣ ⩽ Y
}

when ik = 2.

Here, whenever it is convenient to do so, we abbreviate Bk(Y, Z,E,0) to
Bk(Y, Z,E).

Now for the sake of brevity and generality, we define the following table of
functions

h
(1)
k (v) =


H

(4)
k (v), ik = 0,

H
(4)
k (v)− 1

4ak,0

(
H

(2,1)
k (v)

)2
, ik = 1,

H
(4)
k (v)− 1

4ak,0

(
H

(2,1)
k (v)

)2
+ 1

4ak,0∆k
(δk(v))

2 , ik = 2,

h
(2)
k (v;b, ξ) =


0, ik = 0,

−χ
(1)
k (b, ξ)H

(2,1)
k (v), ik = 1,

−χ
(1)
k (b, ξ)H

(2,1)
k (v) + χ

(2)
k (b, ξ)δk(v), ik = 2,

g
(1)
k (u) =


0, ik = 0,
u2
1

4ak,0
, ik = 1,

u2
1

4ak,0
− u2

2

4ak,0∆k
, ik = 2,

g
(2)
k (u;b, ξ) =


0, ik = 0,

χ
(1)
k (b, ξ)u1, ik = 1,

χ
(1)
k (b, ξ)u1 − χ

(2)
k (b, ξ)u2, ik = 2,

Kk(n, ξ) =


0, ik = 0,

n1ξ1, ik = 1,

n1ξ1 + n2ξ2, ik = 2.

We are now well enough equipped to state the following technical result.

Proposition 3.1. For any real α, and integer 1 ⩽ k ⩽ s we have that

fk(α) =
1

#Bk(1, 1,N)
∑

b∈Bk(1,1,N)

∫
[0,1]ik

Kk(ξ)gk(α; b, ξ)hk(α; b, ξ) dξ,

where

hk(α; b, ξ) =
∑

v∈B(2)
k (X,Z)

e
(
αh

(1)
k (v) + h

(2)
k (v; b, ξ)

)
,
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gk(α; b, ξ) =
∑

|u|⩽MX1/2

e
(
αg

(1)
k (u) + g

(2)
k (u; b, ξ)

)
,

and

Kk(ξ) =
∑

n∈Bk(η,X,Z,γ∗
k)

e(Kk(n, ξ)).

Proof. We begin by considering the case ik = 2. Using the substitutions v = y,

u1 = 2ak,0x1 + ak,1x2 +H
(2,1)
k (v),

and

u2 = ∆kx2 + δk(v),

one obtains

Fk(x;y) =
u2
1

4ak,0
− u2

2

4ak,0∆k

+ h
(1)
k (v).

This lets us rewrite the exponential sum for fk(α) as long as we are careful to
sum over the correct range for u1, u2. Let

sk(u2,v) = u2 − δk(v),

and

tk(u,v) = ∆ku1 −∆kH
(2,1)
k (v)− ak,1sk(u2,v).

We may then define the correct range for u1, u2 by introducing the sets

S
(1)
k (v) = {u2 ∈ Z : sk(u2,v) ≡ 0 mod ∆k} ,

T
(1)
k (v, u2) = {u1 ∈ Z : tk(u,v) ≡ 0 mod 2ak,0∆k} ,

S
(2)
k (v) =

{
u2 ∈ Z :

∣∣∣∣sk(u2,v)

∆kX1/2
− γ∗

k,2

∣∣∣∣ ⩽ η

}
,

T
(2)
k (v, u2) =

{
u1 ∈ Z :

∣∣∣∣ tk(u,v)

2ak,0∆kX1/2
− γ∗

k,1

∣∣∣∣ ⩽ η

}
.

Then setting Sk(v) = S
(1)
k (v)∩S

(2)
k (v) and Tk(v, u2) = T

(1)
k (v, u2)∩T

(2)
k (v, u2)

we may write

fk(α) =
∑

v∈B(2)
k (X,Z)

∑
u2∈Sk(v)

∑
u1∈Tk(v,u2)

e

(
α

(
u2
1

4ak,0
− u2

2

4ak,0∆k

+ h
(1)
k (v)

))
.

Given the definitions of u1, u2 and noting that |γ∗
k|, |η| ⩽ 1, one easily sees

that |u| ⩽ MX1/2 where M is defined in (3.1). This bound will be used later
once we get rid of the pesky restrictions in the summand. We may immediately

do this by using detector functions which pick up membership in S
(1)
k (v) and

T
(1)
k (u2,v). We do this by introducing the functions

κ
(1)
k (u,v) =

1

2|ak,0∆k|

2|ak,0∆k|∑
b1=1

e

(
b1

2ak,0∆k

tk(u,v)

)
,
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κ
(2)
k (u2,v) =

1

|∆k|

|∆k|∑
b2=1

e

(
b2
∆k

sk(u2,v)

)
.

We may similarly pick up membership in S
(2)
k (v) and T

(2)
k (u2,v) by introducing

the functions

λ
(1)
k (u,v) =

∫ 1

0

∑
∣∣∣∣ n1

2ak,0∆kX1/2
−γ∗

k,1

∣∣∣∣⩽η

e ((n1 − tk(u,v)) ξ1) dξ1,

λ
(2)
k (u2,v) =

∫ 1

0

∑
∣∣∣∣ n2

∆kX1/2
−γ∗

k,2

∣∣∣∣⩽η

e ((n2 − sk(u2,v)) ξ2) dξ2.

Thus κ
(2)
k (u2,v)λ

(2)
k (u2,v) = 1Sk(v)(u2) and κ

(1)
k (u,v)λ

(1)
k (u,v) = 1Tk(u2,v)(u1).

Plugging in these indicator functions we see that fk(α) is equal to∑
v∈B(2)

k (X,Z)
|u|⩽MX1/2

1Tk(u2,v)(u1)1Sk(v)(u2)e

(
α

(
u2
1

4ak,0
− u2

2

4ak,0∆k

+ h
(1)
k (v)

))
.

By expanding 1Tk(u2,v)(u1)1Sk(v)(u2) as exponential sums using our detector
functions, we can interchange the order of summation and integration, making
the summation ranges independent of each other. After this, we can group
terms into separate exponential sums and arrive at the following equation.

fk(α) =
1

2|ak,0∆k|
∑

1⩽b1⩽2|ak,0|
1⩽b2⩽|∆k|

∫ 1

0

∫ 1

0

Kk(ξ)gk(α;b, ξ)hk(α;b, ξ) dξ.

This establishes the case ik = 2 of the Proposition. One may then, via a
similar yet simpler proof, show that the case ik = 1 follows and the case ik = 0
is trivially true. □

Lemma 3.2. Let E ⊂ [0, 1] be any Lebesgue measurable set and following
our previously established indexing suppose that b = (b1, . . . , bs) ∈ Zs1 and
ξ = (ξ1, . . . , ξs) ∈ [0, 1]s1. In addition suppose that one has a bound of the
form

ΞE(b; ξ) =

∫
E

∏
1⩽k⩽s

|gk(α; bk, ξk)hk(α; bk, ξk)| dα ≪ Xσ,

where σ is fixed and the implicit constants are independent of b and ξ. Then
we have ∫

E

|f(α)| dα ≪ Xσ log(X)s1 .

Proof. Set

B =
∏

1⩽k⩽s

Bk(1, 1,N), K(ξ) =
∏

1⩽k⩽s

|Kk(ξk)|.
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We may apply Proposition 3.1 to each polynomial fk where 1 ⩽ k ⩽ s. Then,
upon applying the triangle inequality and switching the order of summation
and integration one obtains the relation∫

E

|f(α)| dα ⩽
1

#B

∑
b∈B

∫
[0,1]s1

Ξ(b; ξ)K(ξ) dξ. (3.2)

Substituting the bound Ξ(b; ξ) ≪ Xσ into (3.2) and noting that the implicit
constant is independent of b, ξ we obtain∫

E

|f(α)| dα ≪ Xσ

#B

∑
b∈B

∫
[0,1]s1

K(ξ) dξ.

All that is left to prove is that

1

#B

∑
b∈B

∫
[0,1]s1

K(ξ) dξ ≪ (logX)s1 ,

this is however immediately clear upon recalling the definition of K(ξ) and
making use of the basic estimate∫ 1

0

∣∣∣∣∑
|n|⩽X

e(−nξ)

∣∣∣∣ dξ ≪ logX.

□

As a consequence of Lemma 3.2, if we can obtain a bound for Ξmδ
(b; ξ), we

may transfer this to a bound over the minor arcs. Before obtaining such a
bound we first require a mean value estimate that allows us to deal with the
cases when 1 ⩽ s1 ⩽ 3.

Lemma 3.3. Let G(1) ∈ Q, G(2) ∈ R. Also, let H(1) ∈ Q[y1, y2] be a non-
degenerate homogeneous quartic, and H(2) ∈ R[y1, y2] be a non-degenerate
homogeneous quadratic. Then for positive numbers P,Q, |η| ⩽ 1, and ρ ∈
[−1, 1]2, we define the exponential sums

G(α) =
∑
|x|⩽P

e(αG(1)x2 +G(2)x),

H(α) =
∑

| yQ−ρ|⩽η

e
(
αH(1)(y) +H(2)(y)

)
.

Then for large P,Q we have the following mean value bound

∥G(α)H(α)∥22 ≪ PQ2+ε +Q4P ε,

where the implicit constant is only dependent on G(1) and the coefficients of
H(1).

Proof. Let N be the smallest natural number such that NG(1)H(1) ∈ Z[y1, y2],
then by a change of variables one has that

∥G(α)H(α)∥22 ⩽ N ∥G(Nα)H(Nα)∥22 ,
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where, by orthogonality, the right hand side is bounded by N times the number
of integer solutions of

NG(1)(x2
1 − x2

2) = NH(1)(y1)−NH(1)(y2),

where

|xi| ⩽ P and

∣∣∣∣yi

Q
− ρ

∣∣∣∣ ⩽ η.

We then we split into two cases, if |x1| = |x2|, of which there are O(P ) many
ways this can happen, then we count the number of solutions of NH(1)(y1)−
NH(1)(y2) = 0. By orthogonality this quantity is equal to∥∥∥∥∥ ∑

| yQ−ρ|⩽η

e
(
αNH(1)(y)

)∥∥∥∥∥
2

dα ≪ Q2+ε,

where the bound comes from Theorem 2 of [8]. So in the case |x1| = |x2| there
are O(PQ2+ε) choices for our variables. If |x1| ≠ |x2|, then let n = x2

1−x2
2 ̸= 0,

then there are at most O(Q4) choices for the yi and by the divisor estimate
at most O(P ε) choices for x1, x2. So in the case |x1| ≠ |x2| there are at
most O(Q4P ε) choices for our variables. The fact that the implicit constant is
dependent only on G(1) and the coefficients of H(1) is clear from our application
of orthogonality and the way we chose N . □

With this mean value estimate, we are now ready to bound Ξmδ
(b; ξ).

Proposition 3.4. Let b = (b1, . . . , bs) ∈ Zs1 and ξ = (ξ1, . . . , ξs) ∈ [0, 1]s1.
Then we have that

Ξmδ
(b; ξ) ≪ Xs1/2+s2/4−1−δ/32+ε,

where the implicit constant is dependent only on the coefficients of Φ and ε.

Proof. Referencing the definition of the exponential sums gk from Proposition
3.1 one notes that in the case that ik = 2 this exponential sum may be split
and written as the product of two single variable exponential sums. Thus one
may write ∏

1⩽k⩽s

gk(α;bk, ξk) =
∏

1⩽i⩽s1

Gi(α;b, ξ), (3.3)

where, in reference to the notation of Lemma 3.3, each of the exponential sums
Gi(α;b, ξ) satisfy the conditions onG with the rational numberG(1) dependent
only on the coefficients of Φ, the real number G(2) dependent on the coefficients
of Φ, b, and ξ. Finally, the length of the summation is P = MX1/2.

By a similar thought process, we may write∏
1⩽k⩽s

hk(α;bk, ξk) =

 ∏
1⩽j⩽s2/2

Hj(α;b, ξ)

H0(α;b, ξ), (3.4)

where instead of splitting exponential sums we sometimes combine exponential
sums over a single variable into an exponential sum over two variables. In ref-
erence to the notation of Lemma 3.3, each of the exponential sums Hi(α;b, ξ)
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for 1 ⩽ j ⩽ s2/2 satisfy the conditions on H with the rational binary quartic
H(1) dependent only on the coefficients of Φ, the real binary quadratic H(2)

dependent on the coefficients of Φ, b, and ξ. Finally, the length of the sum be-
ing Q = X1/4 and some center ρ = (ρ1, ρ2) coming from ρ∗. Additionally, the
function H0(α;b, ξ) is either 1 if s2 is even, or it is equal to some hk(α;bk, ξk)
where jk = 1 if s2 is odd. It is important to note here that with respect to
α the arguments of all of these exponential sums are dependent only on the
coefficients of Φ. Setting m = min{s1, 4} we define

S1(α;b, ξ) =



∏
1⩽j⩽8

Hj(α;b, ξ), s1 = 0,

G1(α;b, ξ)
∏

1⩽j⩽5

Hj(α;b, ξ), s1 = 1,∏
1⩽i⩽m

Gi(α;b, ξ)
∏

1⩽j⩽4−m

Hj(α;b, ξ), s1 ⩾ 2,

then in reference to equations (3.3) and (3.4) we implicitly define S2(α;b, ξ)
to be the product of the remaining exponential sums such that it satisfies

S1(α;b, ξ)S2(α;b, ξ) =
∏

1⩽k⩽s

gk(α;bk, ξk)hk(α;bk, ξk).

Thus, by an application of Hölder’s inequality we obtain the bound

Ξmδ
(b, ξ) ⩽ ∥S2(α;b, ξ)∥L∞(mδ)

∥S1(α;b, ξ)∥1 . (3.5)

By our conditions on the number of variables from Theorem 1.2, it must be
the case that the function S2(α;b, ξ) is a non-empty product of exponential
sums which contains at least one of the following three exponential sums,

Gs1(α;b, ξ), Hs2/2(α;b, ξ), or H0(α;b, ξ).

Via a direct application of either Weyl’s inequality (see [6, Lemma 2.4]) or
Theorem 1 from [8] we obtain the following bounds,

sup
α∈mδ

|Gs1(α;b, ξ)| ≪ X1/2−δ/4+ε,

sup
α∈mδ

|H0(α;b, ξ)| ≪ X1/4−δ/32+ε,

and

sup
α∈mδ

|Hs2/2(α;b, ξ)| ≪ X1/2−δ/16+ε.

We note here that, by our previous comment, the implicit constants arising
from these pointwise bounds are only dependent on the coefficients of Φ and
ε. Regardless of which situation we find ourselves in we, at worst, obtain the
bound

∥S2(α;b, ξ)∥L∞(mδ)
≪


Xs2/4−4−δ/32+ε, s1 = 0,

Xs2/4−5/2−δ/32+ε, s1 = 1,

Xs1/2+s2/4−2−δ/32+ε, s1 ⩾ 2.

(3.6)
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All that is left is to bound ∥S1(α;b, ξ)∥1. There are a few cases to consider.
If s1 ≥ 4, by Hölder’s inequality and Hua’s Lemma (see [6, Lemma 2.5]) we
have that ∥S1(α;b, ξ)∥1 is bounded above by∏

1⩽i⩽4

∥Gi(α;b, ξ)∥4 ≪ X1+ε.

If s1 = 3, by Hölder’s inequality, Hua’s Lemma, and Lemma 3.3 we see that
∥S1(α;b, ξ)∥1 is bounded above by

∥G1(α;b, ξ)H1(α;b, ξ)∥2 ∥G2(α;b, ξ)∥4 ∥G3(α;b, ξ)∥4 ≪ X1+ε.

If s1 = 2, by Hölder’s inequality and Lemma 3.3 we see that again ∥S1(α;b, ξ)∥1
is bounded above by

∥G1(α;b, ξ)H1(α;b, ξ)∥2 ∥G2(α;b, ξ)H2(α;b, ξ)∥2 ≪ X1+ε,

If s1 = 1, by Hölder’s inequality, Lemma 3.3, and Theorem 2 from [8] have
that ∥S1(α;b, ξ)∥1 is bounded above by

∥G1(α;b, ξ)H1(α;b, ξ)∥2
∏

2⩽j⩽5

∥Hj(α;b, ξ)∥8 ≪ X2+ε.

Finally, if s1 = 0, by Hölder’s inequality and Theorem 2 from [8] have that
∥S1(α;b, ξ)∥1 is bounded above by∏

1⩽j⩽8

∥Hj(α;b, ξ)∥8 ≪ X3+ε.

Combining these bounds we obtain,

∥S1(α;b, ξ)∥1 ≪


X3+ε, s1 = 0,

X2+ε, s2 = 1,

X1+ε, s2 ⩾ 2.

(3.7)

We, again, note that all of of our implicit constants are only dependent on the
coefficients of Φ and ε. Combining the bounds (3.5), (3.6), and (3.7) we obtain
the desired result. □

Combining the result of Proposition 3.4 with Lemma 3.2 with E = mδ, and
Lemma 2.3 we deduce the following result.

Corollary 3.5. For any 0 < δ < 1/20 we have that

R(X;B1,B2) = S(Xδ)J(Xδ, 1)Xs1/2+s2/4−1 + o(Xs1/2+s2/4−1).

4. The Singular Series

We begin by establishing the absolute convergence of the complete singular
series

S =
∞∑
q=1

A(q), where A(q) =

q∑
a=1

(a,q)=1

q−(s1+s2)S(q, a). (4.1)
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In order to achieve this we introduce the auxiliary functions, for 1 ⩽ k ⩽ s
and fixed u ∈ Zik , v ∈ Zjk , defined by

x
(1)
k (u,v) = 2ak,0u1 + ak,1u2 +H

(2,1)
k (v) , x

(2)
k (u2,v) = ∆ku2 + δk(v),

where, if u ∈ Z we take u2 = 0. Next, define

Ak =


1, ik = 0,

4ak,0, ik = 1,

4ak,0∆k, ik = 2,

g̃k(u,v) =


0, ik = 0,

x
(1)
k (u,v)2, ik = 1,

∆kx
(1)
k (u,v)2 − x

(2)
k (u2,v)

2, ik = 2,

h̃k(v) =


H

(4)
k (v), ik = 0,

4ak,0H
(4)
k (v)−

(
H

(2,1)
k (v)

)2
, ik = 1,

4ak,0∆kH
(4)
k (v)−∆k

(
H

(2,1)
k (v)

)2
+ (δk(v))

2 , ik = 2.

Then we define the exponential sum

Tk(q, a) =
∑

v∈(Z/qZ)jk

e

(
a

q
h̃k(v)

) ∑
u∈(Z/qZ)ik

e

(
a

q
g̃k(u,v)

)
.

One then has a relation between Sk from (2.2) and the function Tk.

Lemma 4.1. For any natural numbers a, q one has that

Sk(q, a) =

(
(a,Ak)

Ak

)ik+jk

Tk

(
Akq

(a,Ak)
,

a

(a,Ak)

)
.

Proof. One begins by noting that

Sk(q, a) =
∑

u∈(Z/qZ)ik
v∈(Z/qZ)jk

e

(
a

qAk

(
h̃k(v) + g̃k(u,v)

))
.

Upon setting

a′ =
a

(a,Ak)
and q′ =

Akq

(a,Ak)
,

one sees from periodicity that∑
u∈(Z/qZ)ik
v∈(Z/qZ)jk

e

(
a

qAk

(
h̃k(v) + g̃k(u,v)

))
=

(
q

q′

)ik+jk

Tk(q
′, a′).

□
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We now note that both Sk and Tk satisfy the quasi-multiplicative property
that when (a, q) = (b, r) = (q, r) = 1 we have

Sk(qr, ar + bq) = Sk(q, a)Sk(r, b), (4.2)

and

Tk(qr, ar + bq) = Tk(q, a)Tk(r, b). (4.3)

The proof of this is exactly the same as the one given for Lemma 2.10 in
[6]. Upon recalling (4.1) and (2.2) we see that (4.2) and an application of the
Chinese Remainder Theorem leads us to conclude that A(q) is a multiplicative
function, thus to establish the absolute convergence of the complete singular
series we need only provide a good bound on A(q) when q is a prime power.

Lemma 4.2. Given a prime p and any h ∈ N we have that

A(ph) ≪

{
p−5/4, h = 1,

p−9h/16, h ⩾ 2.

Proof. First, we may suppose that p > M or else the result is trivial since
2 ⩽ p ⩽ M = O(1) whence p ≍ 1. First, we proceed by bounding Tk(p

h, a)
for some a which is relatively prime to p and transferring this information to
a bound on Sk(p

h, a).

Consider the case in which ik = 2. Since p > M it must be the case that
(ph, Ak) = 1 for all 1 ⩽ k ⩽ s, thus for any fixed u2,v we see that the set of
residues {

2ak,0u1 + ak,1u2 +H
(2,1)
k (v) mod ph : 1 ⩽ u1 ⩽ ph

}
,

is in bijective correspondence with Z/phZ. Thus we have∑
1⩽u1⩽ph

e

(
a∆k

ph

(
x
(1)
k (u,v)

)2)
=

∑
1⩽x⩽ph

e

(
a∆k

ph
x2

)
,

note that this is independent of u2 and v. The same reasoning also leads to
the conclusion that∑

1⩽u2⩽ph

e

(
− a

ph

(
x
(2)
k (u2,v)

)2)
=
∑

1⩽y⩽ph

e

(
− a

ph
y2
)
,

which is independent of v. Combining these we see that∑
u∈(Z/phZ)2

e

(
a

p
g̃k(u,v)

)
=

∑
1⩽x⩽ph

e

(
a∆k

ph
x2

) ∑
1⩽y⩽ph

e

(
− a

ph
y2
)
,

since this is independent of v we conclude that Tk(p
h, a) is bounded by∣∣∣∣∣∣

∑
1⩽x⩽ph

e

(
a∆k

ph
x2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∑

1⩽x⩽ph

e

(
− a

ph
x2

)∣∣∣∣∣∣
∣∣∣∣∣∣

∑
v∈(Z/phZ)jk

e

(
a

ph
h̃k(v)

)∣∣∣∣∣∣ .
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In the case h = 1, one may use the standard Gauss sum estimate to obtain
square root cancellation in the first two exponential sums. We then utilize
Corollary 2F of [5] on the third exponential sum to obtain square root can-
cellation over one of the variables while trivially summing over any remaining
variables. This yields the bound

Tk(p, a) ≪ p1+3jk/4.

In the case h ⩾ 2 we may apply Weyl’s inequality to the first two exponential
sums and either Weyl’s inequality if jk = 1 or Theorem 1 from [8] if jk = 2 to
obtain the bound

Tk(p
h, a) ≪ ph(1+7jk/8+ε).

All in all we have established that for ik = 2 we have the bound

Tk(p
h, a) ≪

{
pik/2+3jk/4, h = 1,

ph(ik/2+7jk/8+ε), h ⩾ 2.
(4.4)

One may easily extend this bound to work for ik = 1 or 0 by noting that the
only element of our argument that may change would be that we need only
consider ik many quadratic exponential sums each of which obtains square root
cancellation.

Now we will show that the bound (4.4) may also be applied to Sk(p
h, a).

Since (ph, Ak) = 1 for all 1 ⩽ k ⩽ s and that a is relatively prime to p, we
have by the Chinese Remainder Theorem that there exists

b ∈ (Z/phZ)× and ck ∈
(
Z/

Ak

(a,Ak)
Z
)×

,

such that
a

(a,Ak)
= b

Ak

(a,Ak)
+ ckp

h.

Then by Lemma 4.1 and (4.3) we conclude that

Sk(p
h, a) =

(
(a,Ak)

Ak

)ik+jk

Tk

(
Ak

(a,Ak)
, ck

)
Tk

(
ph, b

)
≪ Tk(p

h, b),

whence by (4.4)

Sk(p
h, a) ≪

{
pik/2+3jk/4, h = 1,

ph(ik/2+7jk/8+ε), h ⩾ 2.

Upon recalling (2.2) and (4.1) one may then conclude that

A(ph) ≪

{
p1−s1/2−s2/4, h = 1,

ph(1−s1/2−s2/8+ε), h ⩾ 2.

One may derive that

s1
2
+

s2
4

⩾
9

4
and

s1
2
+

s2
8

⩾
13

8
,
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for integer values of s1, s2 which satisfy our hypothesis concerning s1 and s2
in Theorem 1.2, hence we conclude that

A(ph) ≪

{
p−5/4, h = 1,

p−h(5/8−ε), h ⩾ 2.

Which proves the result by simply substituting 5/8− ε with 9/16. □

With this bound established we are ready to show the absolute convergence
of the singular series.

Lemma 4.3. The complete singular series S is absolutely convergent and
additionally we have that

|S−S(Q)| ≪ Q−1/32.

Proof. By Lemma 4.2 there exists a constant C dependent only on the coeffi-
cients of the polynomial Φ such that for every prime p, we have that

∞∑
h=1

ph/32
∣∣A(ph)∣∣ ⩽ Cp−1−1/16.

Hence by the Euler product∑
q>Q

|A(q)| ⩽
∞∑
q=1

(
q

Q

)1/32

|A(q)| ⩽ Q−1/32
∏
p

(
1 + Cp−1−1/16

)
≪ Q−1/32.

Where the last inequality is due to the infinite product being known to be
absolutely convergent. □

With this result we have by the same analysis as in section 2.6 in [6] that

S =
∏
p

σ(p),

where

σp = lim
h→∞

ph(1−s1−s2)#{(x,y) ∈ (Z/phZ)s1+s2 : Φ(x,y) ≡ 0 mod ph}.

Combining Lemma 4.3 with Corollary 3.5, one may apply Hensel’s Lemma to
derive that the existence of non-singular p-adic zeroes guarantees that σ(p) > 0
for all primes.

We summarize our findings with a Corollary.

Corollary 4.4. For any 0 < δ < 1/20 we have that

R(X;B1,B2) = J(Xδ, 1)
∏
p

σ(p)Xs1/2+s2/4−1 + o(Xs1/2+s2/4−1).

If we additionally assume p-adic solubility of Φ then
∏

p σ(p) > 0.
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5. The Singular Integral

Here, we establish the convergence of the complete singular integral

σ∞(B(1),B(2)) = lim
Q→∞

J(Q, 1) = lim
Q→∞

∫
|β|⩽Q

I(1, β) dβ.

Thus far we have not specified the center, ξ∗ := (γ∗,ρ∗), nor the side length,
2η, of the cubes B(1), B(2). Here, we show that there exists a choice of these
free variables such that one may show the convergence of the complete singular
integral. Our strategy will be the same as outlined in chapter 16 of [3].

Lemma 5.1. Suppose that Φ has non-singular real solutions. Then there exists
a cube B = B(1) ×B(2) ⊂ Rs1+s2 with center ξ∗ and side length 2η∗ such that
the limit

σ∞(B(1),B(2)) = lim
Q→∞

∫
|β|⩽Q

I(1, β) dβ,

exists and is strictly positive, hence

J(Q, 1) = σ∞(B(1),B(2)) + o(1).

Proof. Let ξ∗ be a non-singular real solution to Φ, then define

ci =
∂Φ

∂ξi
(ξ∗),

for each 1 ⩽ i ⩽ s1 + s2. Without loss of generality we may suppose that
c1 ̸= 0 then by Taylor’s Theorem

Φ(ξ∗ + ξ) =
∑

1⩽i⩽s1+s2

ciξi + P (ξ),

where P is a polynomial which is O(|ξ|2) near ξ = 0. Call ζ = Φ(ξ∗ + ξ),
then by the implicit function Theorem there then exists a strictly positive real
number η for which on the neighborhood |ξ| < η the variable ξ1 can be defined
in terms of ξ2, . . . , ξs1+s2 and ζ. From the above we see that this function is of
the form

ξ1 =
ζ

c1
−

∑
2⩽i⩽s1+s2

ci
c1
ξi + P1(ζ, ξ2, . . . , ξs1+s2),

where P1 is a multiple power series with terms of degree at least two. Taking
partial derivatives with respect to ζ yields

∂ξ1
∂ζ

=
1

c1
+

∂P1

∂ζ
(ζ, ξ2, . . . , ξs1+s2).

By continuity there exists a function σ(η) which goes to zero as η goes to zero
which satisfies the statement

|ξ| ⩽ η implies that |ζ(ξ)| ⩽ σ(η).

Thus, we choose η∗ to be sufficiently small such that∣∣∣∣∂P1

∂ζ
(ζ, ξ2, . . . , ξs1+s2)

∣∣∣∣ < 1

2|c1|
,
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holds for |ζ| ⩽ σ(η∗) and |ξi| ⩽ η∗ for 2 ⩽ i ⩽ s1 + s2.

Thus, having chosen the center of our cube B to be ξ∗ and the side length
to be 2η∗ we have by our above analysis that

σ∞(B(1),B(2)) = lim
Q→∞

∫
[−η∗,η∗]s1+s2

sin(2πQΦ(ξ∗ + ξ))

πΦ(ξ∗ + ξ)
dξ

= lim
Q→∞

∫ σ(η∗)

−σ(η∗)

sin(2πQζ)

πζ
V (ζ) dζ.

Where

V (ζ) =

∫
B(η∗,ζ)

(
1

c1
+

∂P1

∂ζ
(ζ, ξ2, . . . , ξs1+s2)

)
dξ2 · · · dξs1+s2 ,

and B(η∗, ζ) is the set of ξ2, . . . , ξs1+s2 satisfying |ξi| < η for which

|ξ1(ζ, ξ2, . . . , ξs1+s2)| < η∗.

It is clear that V (ζ) is of bounded variation because it has both left and right
bounded derivatives everywhere. Thus by Fourier’s integral Theorem the limit
as Q → ∞ exists and we conclude that

σ∞(B(1),B(2)) = V (0).

The value V (0) is strictly positive by construction since∣∣∣∣ 1c1 +
∂P1

∂ζ
(0, ξ2, . . . , ξs1+s2)

∣∣∣∣ > 1

2|c1|
,

for (ξ2, . . . , ξs1+s2) ∈ B(η∗, 0) and mes{B(η∗, 0)} ≫ 1. □

Upon combining the result of Lemma 5.1 with Corollary 4.4 and setting
δ < 1/20 we have finally proven Theorem 1.2.

6. Further Problems

As referenced in section 1, there are many possible weighted forms one could
investigate. Here, we outline a general class of problems that may be tackled
in a manner similar to the one we discuss in this paper. Let d ⩾ 2 be given,
then if we let H(n) denote a form of degree n one may investigate the zeros of
the weighted 2d form

Φ2d(x;y) = H(2)(x) +
∑

1⩽i⩽s1

xiH
(d)
i (y) +H(2d)(y).

Note that Φ2d is a general weighted 2d form in which the variable weights are
either 1 or d, up to a relabeling of variables. The most pressing issue is non-
trivially bounding the minor arcs. We start by first setting v = y and finding
a suitable non-singular linear substitution x 7→ ũ such that

H(2)(x) +
∑

1⩽i⩽s1

xiH
(d)(y) =

1

Q

( ∑
1⩽i⩽s1

ãiũ
2
i + ũiH̃

(d)
i (v)

)
,
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where Q, ã1, . . . , ãs1 ∈ Z\{0} and the H̃
(d)
i are integral linear combinations of

the H
(d)
i . Upon making the substitutions

ui = 2ãiũi + H̃
(d)
i (v), A =

∏
1⩽i⩽s1

ãi, ai =
A

ãi
,

and

H̃(2d)(v) = 4AQH(2d)(v)−
∑

1⩽i⩽s1

ai

(
H̃(d)(v)

)2
,

one has that

Φ2d(x;y) =
1

4AQ

( ∑
1⩽i⩽s1

aiu
2
i + H̃(2d)(v)

)
.

Hence, counting zeros of Φ2d(x;y) is equivalent to counting zeros of∑
1⩽i⩽s1

aiu
2
i + H̃(2d)(v),

where given a particular choice of v there are certain congruence conditions

on the variables u which depend on the coefficients of H(2) and H
(d)
i (v).

It seems reasonable that the arguments present in section 3 should allow
one to understand the minor arcs in this problem given bounds on an integral
of the shape

I(m) =

∫
m

|g(α)s1h(α)|dα

where
g(α) =

∑
|x|⩽X1/2

e(αx2), h(α) =
∑

|v|⩽X1/2d

e(αH̃(2d)(v)),

and some suitable definition of the minor arcs m. Assuming some reasonable
non-singularity conditions on the form H̃(2d)(v) one could apply Hölder’s in-
equality, classical exponential sum bounds, and Lemma 4.3 from [1] to establish
that

I(m) = o(Xs1/2+s2/4−1)

whenever s1 and s2 satisfy
s1
2
+

s2
22d−1(2d− 1)

> 2.

However, there are some technical challenges with this approach. Thus, in
this paper, we decided to focus on cases where the polynomial H̃(2d)(v) can be
decomposed as a sum of binary forms. This approach enables us to elucidate
the key concepts without delving too deeply into intricate technical details.

We finish by noting that the problem of general weighted forms appears to be
beyond the scope of our current techniques as we require some way to separate
the variables of large weight. To see this consider the case of a weighted 12
form Φ(x;y; z) where the variable x has weight 4, y has weight 3, and z has
weight 2. This weighted 12 form contains integral linear combinations of forms
of the shape

H(3)(x)H(4)(y)H(6)(z).
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The main tool we have been using so far is completing the square which allows
us to separate the variables of large weight, which is not applicable to the above
form. It appears that new ideas will be required to make further progress.
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